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Abstract
The emergence of hydrocarbons within shale as a major recoverable resource has sparked 
interest in fluid transport through these tight mudstones. Recent studies suggest the impor-
tance to recovery of microfracture networks that connect localized zones with large organic 
content to the inorganic matrix. This paper presents a joint modeling and experimental 
study to examine the onset, formation, and evolution of microfracture networks as shale 
matures. Both the stress field and fractures are simulated and imaged. A novel laboratory-
scale, phase-field fracture propagation model was developed to characterize the material 
failure mechanisms that play a significant role during the shale maturation process. The 
numerical model developed consists of coupled solid deformation, pore pressure, and frac-
ture propagation mechanisms. Benchmark tests were conducted to validate model accu-
racy. Laboratory-grade gelatins with varying Young’s modulus were used as scaled-rock 
analogs in a two-dimensional Hele-Shaw cell apparatus. Yeast within the gelatin generates 
gas in a fashion analogous to hydrocarbon formation as shale matures. These setups allow 
study and visualization of host rock elastic-brittle fracture and fracture network propaga-
tion mechanisms. The experimental setup was fitted to utilize photoelasticity principles 
coupled with birefringence properties of gelatin to explore visually the stress field of the 
gelatin as the fracture network developed. Stress optics image analysis and linear elastic 
fracture mechanics (LEFM) principles for crack propagation were used to monitor frac-
ture growth for each gelatin type. Observed and simulated responses suggest gas diffusion 
within and deformation of the gelatin matrix as predominant mechanisms for energy dissi-
pation depending on gelatin strength. LEFM, an experimental estimation of principal stress 
development with fracture growth, at different stages was determined for each gelatin rhe-
ology. The interplay of gas diffusion and material deformation determines the resulting 
frequency and pattern of fractures. Results correlate with Young’s modulus. Experimental 
and computed stress fields reveal that fractures resulting from internal gas generation are 
similar to, but not identical to, type 1 opening mode.
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List of Symbols
Α  Cross-sectional area  (m2)
b  Biot coefficient (1)
D  Diffusion coefficient  (m2/s)
Ε  Francfort–Marigo energy functional (J)
Εm  Young’s modulus (Pa)
e  Infinitesimal strain tensor
fσ  Stress-fringe factor (N/mm/fringe)
Gc  Critical energy release rate (J/m2)
k  Permeability tensor  (m2)
K  Bulk modulus (Pa)
Kdry  Drained bulk modulus
Kc  Fracture toughness (Pa

√
m)

Kd  Darcy permeability (nD)
KI  Stress-intensity factor (Pa

√
m)

h  Sample thickness (m)
Hc  Length of host matrix (m)
Hi  Length of fracture i (m)
l  Fracture length (m)
L  Length of sample (m)
M  Biot modulus (Pa)
N  Fringe order
OL  Ordinary light
Pe  Elastic pressure (Pa)
Pp  Propagation pressure (Pa)
PL  Polarized Light
q  Fluid source term (kg/s)
r  Radius from crack tip to stress element (m)
Re  Reynold’s number
Sav  Average fracture spacing (m)
Wc  Width of host matrix (m)
u  Displacement field (m)
uf  Fracture velocity (m/s)
Vi  Dead volume  (m3)
w  Fracture opening (m)
wf  Fracture thickness (m)
y  Fracture width (m)
αd  Pulse decay semilog slope  (s−1)
β  Gas compressibility  (Pa−1)
ϵ  Length-scale parameter (m)
φ  Phase-field variable (1)
Φ  Strain energy density (J)
γs  Surface energy (J s−1)
Γ  Crack surface area  (m2)
ρ  Density (kg/m3)
η  Viscosity (Pa s)
σ  Biot effective stress (Pa)
σi  Principal stress in i direction (Pa)
σtotal  Total stress (Pa)



505Investigation of Stress Field and Fracture Development During…

1 3

ϑ  Angle of stress element (°)
ϑss  Steady-state time (s)
ν  Poisson ratio

1 Introduction

The term ‘shale’ is broadly used to describe a fine-grained sedimentary rock with large 
amounts of organic material, or kerogen, that is capable of generating petroleum under 
appropriate conditions of heat and pressure (McCarthy et al. 2011). Source rock thermal 
maturity is one of the key properties of the formation. It is tied to hydrocarbon genera-
tion capacity and yield. Thermal maturation of source rock spans a complex sequence of 
thermodynamic processes that result in decomposition of the organic matter into light and 
heavy hydrocarbon fractions and into gas and liquid phases. Maturation is determined by 
the geological burial conditions of the formation, temperature, pressure, and time, where 
time is on the order of a few tens or hundreds of million years (Allix et al. 2011). A number 
of kinetic models that describe source rock maturation in terms of the transformation of 
kerogen into oil and gas have been proposed by Burnham and Singleton (1983), Bostrom 
et al. (2009), Burnham (2010), and Le-Doan et al. (2013), among others. Thermal matura-
tion can also be artificially induced through industrial processes such as retorting (Ameri-
can Association of Petroleum Geologists 2016).

The incremental production of liquid and gaseous phases due to source rock matura-
tion involves a cumulative increase in pore pressure that eventually prompts changes in the 
modulus and distribution of the strain energy of the rock. Fracturing deformation is one of 
the energy dissipation processes potentially triggered by organic matter and kerogen heat-
induced outgassing. A number of studies found that fracture formation constitutes a signifi-
cant mechanism that increases permeability and provides secondary migration pathways 
for the maturation-generated hydrocarbons. Capuano (1993) studied the shales in the Oli-
gocene Frio Formation in Texas and determined microfractures were most likely the main 
supporters of flow. Authors du Rouchet (1981), Talukdar et al. (1988), Özkaya (1988), and 
Márquez and Mountjoy (1996) proposed microfractures as a by-product of catagenesis. 
Berg and Gangi (1999) proposed equations for pressure change within source rocks, citing 
fracturing by gas or oil as a possible mechanism for migration from initially low-permea-
bility source rocks. Lash and Engelder (2005) tied microcrack propagation to the pressure 
buildup consequence of kerogen maturation.

A numerical modeling approach to the fracture propagation problem posed by shale 
maturation fracture network development becomes fundamental in order to characterize 
predictably the material failure mechanisms that play a significant role. The foundation of 
theoretical linear fracture mechanics is inspired by the pioneering work of Griffith (1921) 
who showed that a simple stress criterion is not sufficient for prediction of fracture propa-
gation. He argued that the so-called critical energy release rate controls whether a fracture 
is able to propagate along a pre-defined path. The model shows exceptional agreement with 
laboratory results of brittle materials, such as glass. In the later work of Irwin, plastic dis-
sipation is also included to provide a more realistic description of ductile materials. He also 
showed that the energy release rate is related to the stress intensity factor (Irwin 1948). 
There are various models to predict the fracture propagation path by linking it to different 
stress components in different crack opening modes (Erdogan and Sih 1963). These corre-
lations, however, do not universally apply to all problems.
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There are some limitations, however, to Griffith’s original energy criterion (Griffith 
1921): It cannot handle the initiation of cracks; it requires a pre-defined crack—the propa-
gation direction and crack trajectory are not addressed; crack jumps and branching can-
not be modeled, although later there are ad-hoc treatments of branching for some limiting 
cases. These issues are tackled in more recent work (Francfort and Marigo 1998). They 
propose a variational approach to fracturing that does not require a preexisting fracture tip 
or pre-defined path. The crack initiation and path are quantified by minimizing an energy 
functional. Additionally, this variational fracture criterion was regularized by Bourdin 
et al. (2000, 2008) where a crack is approximated by a functional originally formulated by 
Ambrosio and Tortorelli (1990). Later on, a similar model was constructed with a different 
approach and coined a ‘phase-field’ model (Miehe et al. 2010a).

Classical computational fracture mechanics models often assume a strong discontinuity 
to represent a discrete crack. Such models [for example, cohesive zone models, eXtended 
finite element (XFEM), embedded finite element (EFEM), and discrete fracture (Matrix 
DFM)] are well adapted to model single fracture propagation in this scenario (Chen et al. 
2009; Mohammadnejad and Andrade 2016; Jiang and Yang 2018). The phase-field method 
of modeling fracture propagation has the advantage of being capable of modeling multi-
ple fractures under branching and merging conditions. Especially in a geological context, 
a propagating fracture has the potential to merge with preexisting fractures. Importantly, 
phase field modeling has been applied to hydraulic fracturing (Bourdin et al. 2012; Chuk-
wudozie et al. 2019) and extended to modeling two-phase flow in fractured and poroelastic 
media (Lee et al. 2018).

The fracture network topology generated from numerical simulation and experiments 
allows us to investigate further the evolution of effective permeability during the fracture 
propagation process. For example, Wu et al. (2010) demonstrated the significant impact of 
rapid fluid flow in fractures on a fractured porous medium using boundary-layer theory. 
With the aid of statistical descriptions such as fracture aperture, fracture density and con-
nectivity, the uncertainty associated with percolation is quantified, as illustrated by Ji et al. 
(2011) for example.

The study of the onset and growth of a drainage fracture network within the source 
rock also calls for a battery of experimental data to validate the aforementioned numerical 
model, quantify contributions of various parameters, create physical understanding, as well 
as to reveal variable correlations. One of the challenges is to produce a set of results that 
can be numerically and dynamically described within a controllable and observable length 
scale and at a timescale that is not geologic.

The use of analog materials for the purpose of experimental modeling of processes is 
a common practice in several science and engineering disciplines. An analog is a simpli-
fied representation of a more complex system that has scalable and comparable properties 
to those of the modeled material. An ideal scaled experiment must have an analog mate-
rial that obeys geometric, kinematic, and dynamic similarity with its natural counterpart 
(Hubbert 1937). Geosciences frequently employ analogs, such as gelatin, to study Earth 
crust fracture mechanics and crack propagation. Previous studies have pertained to mag-
matic intrusions (dykes and sills) and volcanic feeder systems (Kavanagh et al. 2006, 2015; 
Watanabe et  al. 2002; Takada 1990) as well as upper crustal deformation (Di Giuseppe 
et al. 2009).

Gelatin is a polypeptide formed from the hydrolytic degradation of pig-skin collagen 
(Ross-Murphy 1992). It is a frequently used analog due to its spectrum of viscoelastic prop-
erties that are tunable to emulate the Earth’s crust brittleness and elasticity. This behavior 
is frequently described as a function of gelatin concentration and temperature, among other 
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variables. At cool temperatures, T ~ 5–10 °C, it is in the solid ‘gel’ state, where the elastic 
behavior dominates and the viscous component is negligible on short-to-moderate time-
scales (Kavanagh et al. 2013). Gelatin at high concentrations (i.e., > 3 wt%), behaves elasti-
cally at that range of temperature. When under shear strain rates on the order of 0.1–1 s−1, 
gelatin is a suitable analog for modeling viscoelastic responses such as seismic activity and 
fracture propagation within the Earth (van Otterloo and Cruden 2016).

Knowledge of the effective viscosity alone is not sufficient to describe the rheological 
properties of polymers and related materials (ten Grotenhuis et  al. 2002). For that rea-
son, gelatin rheology has been studied and documented in order to evaluate its suitabil-
ity as a rock analog. Di Giuseppe et al. (2009), Kavanagh et al. (2013), and van Otterloo 
and Cruden (2016) are among those who researched the suitability of gelatin as a crustal 
and lithospheric analogue. They performed rheological analyses of its viscous and elastic 
attributes.

Recently, Kobchenko et al. (2013, 2014) studied fracture network evolution using gela-
tin and the yeast-mediated fermentation of sugar to produce  CO2 as an internal gas gen-
eration source. In their work, Kobchenko et al. (2013) placed a mixture of water, gelatin, 
sugar, and yeast in pre-determined proportions into a back-lit glass Hele-Shaw cell to visu-
alize internal gas generation and fracturing. Once the gas generation prompted by the sugar 
fermentation starts, the increase in pressure and the rheological properties of the gelatin at 
the experimental conditions combine into the onset and growth of a fracture network that is 
optically and dynamically recorded with a camera for post-processing using image analy-
sis. The open boundaries of the Hele-Shaw cell allow for the gas to escape from the matrix 
once the fracture(s) that carries it reaches the edge of the gelatin-occupied area. In these 
experiments, Kobchenko et al. (2014) observed fracture network evolution in order to study 
the dynamics of fracture patterns formed in a low-permeability elastic solid during internal 
fluid production and subsequent expulsion.

This paper presents a combined fine-scale mechanistic modeling and experimental cam-
paign to improve physical understanding of the interplay of internal gas generation, solid 
deformation, and fracture network creation in viscoelastic solids. On the numerical mod-
eling side, our problem involves the coupling of appropriate physics on multiple scales. 
In the most basic sense, we have (1) solid mechanical deformation, (2) fracture propaga-
tion, and (3) fluid flow in porous media and developed cracks. Specific to the phase-field 
fracture model, the coupling of solid deformation and fracture propagation can be done 
sequentially in a staggered update where the phase-field variable is updated first and then 
the displacement field is computed (Miehe et al. 2010b). Alternately, they can be coupled 
in a monolithic way using a primal–dual-active set strategy (Heister et  al. 2015). Novel 
features of our approach include: accurate transformation of pressurized surface traction 
into smeared body force, stabilized equal-order displacement and pressure coupling, and 
conservative fluid mass during fracture propagation.

On the experimental side, we built a system similar to that described by Kobchenko et al. 
(2013) and performed a series of ordinary light (OL) imaging and polarized light (PL) imag-
ing experiments. Importantly, we study response dependency with geomechanical parameters, 
such as Young’s modulus. We used a range of laboratory-grade gelatin samples with vari-
able gelatin strength in the experiments to observe and compare fracture network development 
correlation to Young’s modulus. Phenomena are imaged at a length scale and time resolu-
tion not currently available to other imaging techniques such as X-ray computed tomography 
(e.g., Glatz et al. 2016, 2018). We employed image analysis to explore new trends and cor-
relations among the measured variables on the experimental data set. We employed concepts 
from linear elastic fracture mechanics (LEFM) to explore novel perspectives on the measured 
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parameters and correlations among parameters that enhance the understanding of fracture net-
work behavior as observed in the analog material. Measurements include gelatin permeability, 
length of fractures, distribution of fracture lengths, growth velocity, pressure at the fracture tip, 
as well as nucleation and coalescence events including the angle of coalescence. In PL experi-
ments, we used photoelasticity imaging techniques to explore transient stress field responses 
in the crack propagation process and to develop a method to transform the imaging-derived 
data into quantitative stress field information, such as principal stresses around the crack tips 
and coalescence (fracture merging) nodes.

The novelty of our work is that microfracture networks are imaged and modeled as they 
form rather than measured after the fact. Host rock elastic-brittle fracture and fracture network 
propagation mechanisms are triggered by internal gas generation, microfracture frequency, 
connectivity, and topology are linked to material properties in a direct fashion. This paper 
proceeds with a discussion of relevant linear elastic fracture mechanics (LEFM), our computa-
tional and experimental frameworks, and then results.

2  Linear Elastic Fracture Mechanics

One of the most widely used criteria for fracture propagation is LEFM theory, developed by 
Griffith to explain the failure of brittle materials (Griffith 1921). It predicts that a fracture 
propagates if the release rate of strain energy with respect to incremental fracture length ∂l is 
equal to critical energy release rate. The criterion can be interpreted as fracture surface energy 
creation in brittle fractures or combined with plastic dissipation in quasi-brittle fractures. In 
this section, we introduce the experimental and modeling approaches that we follow in sup-
porting and developing our investigation. Figure 1 illustrates (a) the LEFM theory postulate, 
1(b) a schematic of our setup for the experimental approach for monitoring the evolution of 
fractures and fracture networks, 1(c) a sample fractured region from our experimental results, 
and 1(d) the phase-field modeling approach.

2.1  LEFM Experimental Approach: Analog Systems

LEFM principles have been used to describe dyke propagation (magmatic intrusion) and, 
importantly, have significant similarity with the gas-driven fracturing of source rocks. In 
both cases, a fluid of lower density intrudes the host matrix and dissipates energy, due to the 
increase in pressure, by fracturing the rock. We adopt those principles as applicable to this 
system. With similar assumptions, Kavanagh et al. (2006) propose a balance of pressures nec-
essary to achieve intrusion and propagation. The intrusion pressure of the fluid needs to be 
equal to or greater than the hosting material’s (gelatin) elastic pressure, Pe

where Em is Young’s modulus, ν2 is Poisson’s ratio squared, and wf and y are the half thick-
ness and half second smallest dimension of the initial crack. The ratio wf/y is typically less 
than 1 in order to apply Eq. (1). Once the crack has nucleated, and in order to propagate, 
the pressure at the tip of the crack must exceed the strength of the host matrix. Fracture 
toughness, Kc, is a parameter defined to describe such strength as

(1)Pe =
Em

2
(
1 − �2

) wf

y

(2)Kc =
√
2�sEm
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where ϒs is the surface energy. The propagation pressure, Pp, is then expressed as

where l is the crack length. Assuming equilibrium, Pe= Pp.

(3)Pp =
Kc√
�l

Fig. 1  Investigation of stress field and fracture development in analogs for shale maturation: a schematic 
representation of the stress in linear elastic fracture mechanics (LEFM) theory as a pressurized crack grows, 
b setup for real time imaging of fracture nucleation and growth, c sample section of observed fractures in 
the gelatin matrix, and d phase field numerical approaches for simulating fracture growth
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2.1.1  Bloom Number and Young’s Modulus

The working principle for measuring Bloom number is described in U.S. Patent No. 
1,540,979 (Bloom 1925). It is similar to the Young’s modulus measurement loading 
method presented by Timoshenko and Goodier (1970). The deflection caused by a load 
applied to the gelatin surface is measured and used in Eq. (4)

where Em is Young’s modulus, ν2 is Poisson’s ratio squared, DL is the diameter of the cylin-
drical load, ML is its mass, d is the displacement caused, and g is the gravitational accelera-
tion. The Bloom number is defined as the mass in grams necessary to indent a 12.5-mm 
diameter plunger 4 mm into a gelatin volume, and assuming the gelatin Poisson ratio value 
reported by Kavanagh et al. (2013) of 0.5, all parameters for Eq. (4) are defined, and cal-
culation of Young’s modulus via Bloom number is possible. Given that values for ν2, DL, 
and d are fixed (0.52, 12.5 mm, and 4 mm, respectively), Eq. (4) is rewritten as a function 
of Bloom number as

Kavanagh et al. (2013) and van Otterloo and Cruden (2016) report Poisson’s ratio (ν) 
values for gelatin of 0.5 and 0.451, respectively. Young’s modulus (Em) values are reported 
in Table  1 according to their Bloom number, as calculated by Eq.  (5). Additionally, 
Kavanagh et al. (2013) report gelatin’s surface energy (ϒs) equal to 1 J m−2. These are the 
values used in this work to calculate the parameters in Eqs. (2) and (3).

2.2  LEFM Modeling approach: Phase Field

In a continuum mechanics form, Griffith’s criterion for fracture propagation is expressed as

where � is the stress tensor, that is a function of displacement u, and e is the infinitesimal 
strain tensor, Gc is the critical energy release rate, and �  the surface area.

This original Griffith’s criterion requires a preexisting crack and a pre-defined fracture 
path. Francfort and Marigo (1998) proposed another fracture propagation criterion that is 
able to predict the initiation of a fracture as well as fracture path:

(4)Em =
MLg

(
1 − �2

)
DLd

(5)Em = 147 × Bloom

(6)�l

(
∫
�

1

2
�(u) ∶ e(u)dV

)
= �l(Gc� )

Table 1  Gelatin Bloom number, calculated Young’s modulus (Em), calculated fracture toughness (Kc), 
measured permeability (K), diffusion coefficient (D), and stress-fringe factor (fσ)

Bloom number Em (Pa) Kc (Pa 
√
m) K (nD) D  (m2/s) fσ (N/mm/fringe)

60 8820 132.81 1.56 × 10−2 2.20 × 10−4 0.016
100 14,700 171.46 1.54 × 10−2 2.04 × 10−4 0.025
250 36,750 271.11 2.16 × 10−3 1.30 × 10−5 0.035
300 44,100 296.98 1.11 × 10−3 1.16 × 10−5 0.043
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where Hdim−1 is the Hausdorff surface measure, � is the strain energy density, � is the 
domain, and Γ is the surface area of the crack. The fracture propagation and path are found 
by taking the infimum of this energy functional. For numerical implementation, the energy 
functional is minimized at each time step with the constraint that the crack propagation is 
irreversible.

Following Biot’s effective stress theory, the effective stress is expressed as σ = σtotal+ bpI, 
the energy functional Eq. (7) for a solid matrix is written as

where E is the energy of the system following Francfort and Marigo (1998), � is the exter-
nal force, and PM the fluid pressure in porous matrix.

In the phase-field method, Γ is approximated as a ϒ-convergent regularization of the dis-
continuity problem as suggested by Bourdin et al. (2000). More recently, it has been suggested 
(Tanné et al. 2018) that the following approximation is more suitable for crack nucleation:

where φ is a scalar phase-field variable with φ = 1 indicating intact material and φ = 0 indi-
cating broken material. Miehe et al. (2010a) argued that when minimizing the functional 
from Ambrosio and Tortorelli (1990) in phase-field model, the resulting partial differential 
equation for φ is diffusion-like with the property that when the length scale parameter ϵ 
tends to zero, the solution of φ approximates a discrete crack. The PDE of φ (Miehe et al. 
2010a) is expressed as

In the following section, we develop a phase-field representation of our system.

3  Numerical Modeling Theoretical Framework

3.1  Graphical Interpretation of Phase‑Field Functional

The phase-field variable can be interpreted as an indicator function for the fracture and solid 
matrix. If we calculate the homogeneous solution to Eq. (10) with Dirichlet boundary condi-
tion φ = 1 on a straight line, the result converges to a discrete crack as ϵ → 0, as illustrated in 
Fig. 2. Following the same form of regularized strain energy from (Bourdin et al. 2000) and 
also applying the quadratic degradation to Biot pressure coupling, we then plug Eq. (9), the 
approximation to the crack surface, into the energy functional Eq. (8) to obtain

(7)∫
���

�dV + ∫
�

Gc(�) ⋅ dH
dim−1(�)

(8)E(u,C) = ∫
���

1

2
�(u) ∶ e(u)dV − ∫

�N�

�udS − ∫
�

bpM∇ ⋅ udV + Gc�

(9)� (�) =
3

8 ∫
�

(1 − �)

�
+ �|∇�|2dV

(10)
Gc

�
(� − �2Δ�) = 2(1 − �)�(u)

(11)
E(u,�) = ∫

�

1

2
�2�(u) ∶ e(u)dV − ∫

�N�

�udS − ∫
�

b�2pM∇ ⋅ udV + Gc�

+
3

8
Gc ∫

�

(1 − �)

�
+ �|∇�|2dV
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In Eq.  (11), the traction boundary condition is written as ∫
�N�

�udS and needs special 

consideration. First, notice that the traction force comes from two sources: (1) traction act-
ing on existing solid matrix boundaries and (2) fluid pressure acting on newly created frac-
ture surfaces. While the former can be simply denoted as ∫

�M�

�udS without further modifi-

cation, there are complications for the second traction force.

3.2  Fracture Interface Law

The boundary condition between fracture and solid matrix should converge to a discrete 
crack when ϵ → 0. For a discrete crack, two conditions have to be satisfied, as follows.

1. Force balance: at the intact region (� = 1) surrounding the fracture, the normal stress 
perpendicular to the fracture surface should equal to the pressure at the fractured region 
(� = 0) and this is written as (σ − bpMI) · n|M=−pf n|F.

2. Conservation of fluid mass is written as ��Vfluid

�t

|||M +
��Vfluid

�t

|||F = 0.

The second condition is automatically satisfied in the continuum formulation developed 
in the next section. To satisfy the first equation, we proceed in the surface integral form:

Note that at fracture surfaces, the phase-field variable is equal to 0 and, therefore, multiply-
ing the original equation by (1 − �) does not change the result. The reason why we multi-
ply by the continuous function (1 − �) is to transform easily into a volume integral that 
satisfies the traction boundary condition. Because in the phase-field model there is not a 
discrete fracture boundary, such as �F� , all the balance laws should be written in a volume 
integral form. More precisely, the traction energy ∫

�F�

�u ⋅ dS needs to be converted into a 

(12)
∫
�F�

� ⋅ udS = ∫
�F�

(−pF�)n ⋅ udS

= ∫
�F�

(−(1 − �)pF�)n ⋅ udS

Fig. 2  Phase-field crack approximation in 2D, with fracture half-length L. Note the continuous variation of 
phase field variable, φ
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volume integral with inaccuracy controlled in a thin region that vanishes as ϵ → 0, as illus-
trated in Fig. 2.

By considering the following volume integral, this requirement is satisfied as

which is exactly equal to Eq. (12). Following the approximation to a fracture surface nor-
mal proposed in Mauthe and Miehe (2017), the normal is approximated as n =

∇�

|∇�| . There-
fore, the volume integral is written as

We compare our strategy with that described in Lee et al. (2016). Our model has the 
property that the approximation is controlled in a small region around the fracture with 
width governed by length-scale factor ϵ. Also, the Biot coefficient term in the energy 
functional ∫

�

−b�2pM∇ ⋅ udV  will remain intact within porous media.

The modified energy functional then becomes

3.3  Fluid Mass Balance Equation

We chose to use fully implicit coupling between solid displacement and fluid pressure 
because of the unconditional time step stability and the superior convergence rate of 
Krylov solvers. Importantly, we use a fixed-stress preconditioning strategy with alge-
bric multigrid inner preconditioner to solve the linear system using BiCGstab (White 
et al. 2016). Because the phase-field variable varies smoothly from 0 to 1, it is used as 
an indicator function for fracture versus matrix. To proceed, we use the Darcy’s flow 
approximation of Lee et al. (2016).

(13)

∫
�F�

∫L

�

�y
((1 − �)pF�)n ⋅ udydS

= ∫
�F�

(−(1 − �)pF�)n ⋅ u|�=0�=1
dS

= ∫
�F�

(−(1 − �)pF�)n ⋅ udS

(14)

∫
𝜕F𝛺

∫L

𝜕

𝜕y
((1 − 𝜑)pF�)n ⋅ udydS

= ∫
𝛺

−∇[(1 − 𝜑)pF�]n(n ⋅ u)dV

= ∫
𝛺

−∇[(1 − 𝜑)pF�]n⊗ n ⋅ udV

(15)
E(u,𝜑) = ∫

𝛺

1

2
𝜑2𝜎(u) ∶ e(u)dV − ∫

𝜕M𝛺

𝜏udS − ∫
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In the following, we use subscript M to denote that the quantity is within the porous matrix, 
and subscript F denotes that the quantity is within the fracture. Then, the fluid conservation in 
porous media is

and within the fracture

where kF = kM� +
w
2

12
m⊗ m according to the Poiseuille-type fluid flow, and the fracture 

aperture, w, is estimated from local deformation (Mauthe and Miehe 2017). The fracture 
direction unit vector m is normal to n =

∇�

|∇�| , M is the Biot modulus, and � is the dynamic 
viscosity of the fluid. A simple combination by taking the phase-field variable � as an indi-
cator function, i.e., Equation  (16) × φ + Eq.  (17) × (1 − φ), does not conserve fluid mass. 
Therefore, we introduce a conservative formulation as follows.

Because a naive convex combination of these two equations does not yield a conservative 
fluid mass, we need to define a mass storage function that itself depends on the phase-field 
variable. Our choice of fluid mass storage function per unit volume is expressed as
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 , where the Biot modulus is 1

M
=
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Ks

+ �cF , and taking the derivative of 
Eq. (15) with respect to time

then the fluid conservation equation becomes

3.4  Bilinear Form

The weak form is derived from the energy functional. But first, the stress is decomposed into 
its compression and extension components, following the procedure described in Amor et al. 
(2009), as
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In order to simplify implementation, we assume the pressure gradient and fracture sur-
face normal are approximately in the same direction, in which case the n⊗ n term can be 
neglected. Then, the weak form is

The balance of the linear momentum equation with degradation of strain energy is

This is a diffusion-like equation with φσ+(u): e(u) acting as a source term. One of the strat-
egies to impose the irreversibility condition ∂t <= 0 is to set this source term as a history-
maximum (Miehe et al. 2010b).

The Jacobian of the weak form is found by taking the second variation of δ2E as

and

3.5  Solution Structure

Originally, a monolithically coupled system is expressed as

We divide the full system of equations into two smaller systems. The solid displacement 
and fluid pressure are implicitly coupled because of the unconditional time step stability 
and superior convergence rate of Krylov solvers. For this system of equations, we use a 
fixed-stress preconditioning strategy with Algebric Multigrid inner preconditioner to solve 
the linear system with BiCGstab (White et al. 2016). This system is coupled with a phase-
field equation in a sequential iterative manner and looped until convergence (Bourdin et al. 
2000).
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Our simulation code was written in C++ and linked against the DEAL.II finite ele-
ment library (Bangerth et  al. 2007). We incorporated some modules from the open-
source phase-field simulation code by Heister et al. (2015) that only takes into account 
the solid deformation. The phase-field irreversibility constraint is maintained by a 
switch between primal–dual-active-set approach (Hintermüller et  al. 2002) and his-
tory-maximum-source term approach (Miehe et al. 2010a, b).

3.6  Stabilized Low‑Order Interpolation for Solid/Fluid Coupling

It is well known to the mixed-finite element community that the kind of coupling between 
solid/fluid used here sometimes causes numerical stability issues (Bochev et  al. 2006). 
Specifically, if we have a nearly incompressible fluid and incompressible rock, and the per-
meability is low, as is the case for shale, a stability problem may arise. Therefore, we have 
to choose the spaces for displacement Sh

u
 and pressure Sh

p
 such that they satisfy the discrete 

Ladyzenskaja–Babuška–Brezzi (LBB) condition

Following the polynomial-pressure-projection technique that was introduced into the 
poro-mechanics community by White and Borja (2008), we add a stabilization term in the 
mass conservation equation for the fluid

If we use first-order interpolation for displacement and pressure, we can apply a constant 
projection onto a piecewise constant interpolator

By doing this, we are able to recover the stable solution even in the undrained limit.

4  Experimental

A systematic experimental structure was created in order to serve as benchmarking data for 
the numerical model. Gelatin was utilized as a rock analog to create a reacting solid that 
evolves a separate phase similar to kerogen maturation in shale.

The experimental setup consists of a vertical Hele-Shaw cell, held by clamps, filled 
with a mixture of water, laboratory-grade gelatin, white sugar, and active dry yeast in pre-
determined proportions, and set to gel (Fig. 3a). The proportions are based on the speci-
fications reported by Kobchenko et al. (2013): 7.5 g of sugar, 2.5 g of yeast, and 58 g of 
gelatin per 1000 cm3 of water. In this work, for ordinary light (OL) imaging experiments, 
a 5.5 wt% gelatin solution was used, while the polarized light (PL) imaging or photoelas-
ticity imaging tests were prepared with 6.7 wt% gelatin solution, in order to match Bloom 
number test standards. The glass plates that make up the Hele-Shaw cell have dimensions 
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of 25.4 × 25.4 cm and are 1 cm thick. The edges of the cell are not confined because the 
perimeter serving as a drainage zone. The glass plates are separated by 2 mm of gelatin 
film.

The glass plates are carefully cleaned, primed with hydrophilic fluids, and stored in a 
distilled water bath in order to favor adhesion of the gel to the glass walls. Once the gelatin 
is prepared and homogenously mixed, half the prepared volume is poured into the Hele-
Shaw cell and the other half is poured into a plastic bottle that is connected to a gas volume 
measuring setup (Fig. 3b). The gas volume production measurement step is skipped in the 
photoelasticity tests. Assuming homogenous distribution of the yeast in the gelatin solu-
tion, the volume of gas produced in the Hele-Shaw cell is assumed to be equal to the vol-
ume of gas measured in the volumetric system. Both Hele-Shaw cell and plastic bottle are 
placed inside a refrigerator at 1 °C. There, the cell is oriented vertically for around 2 h and 
then tilted  90o in order to ensure proper gelation and glass wall adhesion.

The experiment is started by removing the cell and bottle from the refrigerator and plac-
ing them in the imaging setup. The imaging setup consists of a flat horizontal surface where 
a pair of supporting clamps holds the Hele-Shaw cell vertically against a white LED back-
light source. The plastic bottle is connected to the volumetric measuring system. Images 
are recorded using a high-resolution camera (Canon EOS7 with 18 MP image resolution, 
resulting in an average spatial resolution of 165 µm/px) with image acquisition every 1 min. 
Readings from the volumetric system attached to the plastic bottle are collected periodically. 
The experiments are recorded for a period varying between 22 and 24 h (Fig. 3).

When subject to a large amount of stress in a relatively short period of time, gelatin 
tends to display elastic behavior, while smaller amounts of stress, applied for a longer 
period of time are responded to viscously (Di Giuseppe et al. 2009). Therefore, it is impor-
tant to select carefully experimental conditions that favor the elastic/brittle behavior that is 
required to induce fracture network generation and growth. The imaging area is kept at an 
average of 14 ± 1 °C, in order to maintain elastic behavior of the gelatin. Figure 3 illustrates 
(a) the setup at the imaging area, (b) gas volume measuring system, and (c) permeability 
test apparatus based on the description provided by Brace et al. (1968). Four OL tests (OL-
60, OL-100, OL-250, and OL-300 for Bloom 60, 100, 250, and 300, respectively), and four 
photoelastic or PL tests (PL-60, PL-100, PL-250, and PL-300 for Bloom 60, 100, 250, and 
300, respectively) are reported here.

Fig. 3  Experimental apparatus for ordinary light tests at the imaging area a imaging setup and b volumetric 
measurement setup, c permeability measurement apparatus
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4.1  Gelatin Properties

4.1.1  Permeability

Gelatin permeability (unfractured) was estimated utilizing the experimental principles 
described by Brace et al. (1968), otherwise known as pulse-decay tests. A polycarbonate 
apparatus with a no-confining pressure coreholder of 1.25 cm. diameter was used to meas-
ure the transitional response of a pulse of gaseous pressure over a casted-on gelatin cylin-
der. The gas used was  CO2 because it corresponds to the gas produced by yeast. Samples of 
gelatin of Blooms 60 to 300 were tested. Permeability was then calculated as

where Kd is permeability, αd is the slope of the semilog curve P1− Pf versus time, µ is the 
gas viscosity, β is the gas compressibility, L is the length of the gelatin core, A is the cross-
sectional area, and V1 and V2 are the dead volumes at the inlet and outlet of the apparatus, 
respectively.

4.1.2  Diffusion

Gelatin diffusion is estimated from permeability measurements as described above. Arvan-
itoyannis et al. (1997) and Charmette et al. (2004) used pressure decay data to calculate 
gelatin diffusion by approximating Fick’s second law to steady state

where D is the diffusion coefficient and θss is the time at which steady state is reached.

4.2  Photoelasticity

Photoelasticity is a nondestructive, whole-field, graphic stress analysis technique employed 
in diverse 2D and 3D applications to infer experimentally stress fields in solids. It is based 
on an optomechanical property called birefringence exhibited by some transparent materi-
als and is primarily used for analyzing two-dimensional problems, although it is applicable 
to 3D cases mainly by the use of birefringent coating materials (Phillips 2008). Birefrin-
gent materials exhibit dual refraction indices such that when a ray of light passes through 
them, it splits into two rays that take different paths and different speeds, often referred to 
as phase retardation. Several crystals and other transparent materials, such as polymers and 
gelatins, exhibit one form or another of birefringence. In photoelastic materials, birefrin-
gence is such that when a ray of light passes through, it gets resolved along the two princi-
pal stress directions that correspond with its two different refractive indices (Li 2010). In 
1853, Maxwell reported that the refractive indices were linearly proportional to the loads 
of an elastic material and expressed the relationship through the stress optics law. It is often 
written in terms of the number of complete retardation cycles (or fringe order) and fringe 
constant, expressed as
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where N is the fringe order, h is the thickness of the gelatin element, fσ is the material 
stress-fringe factor, and σi are the principal stresses. Fringes are optical effects produced 
as a consequence of the optical interference of the two waves caused by the dual refrac-
tion indices. They appear as a series of successive and contiguous bands that represent 
a different degree of birefringence corresponding to the underlying strain in the sample. 
Fringes will appear first at the most highly stressed points. As the stress field changes, as 
it does in the case of crack propagation, the initial fringes are pushed toward the areas of 
lower stress and ultimately moved toward regions of zero or low stress until the maximum 
load is reached (Vishay Group 2011). The sequence in which the fringes appear determines 
the fringe order. Then, according to Eq. (33), it follows that the difference in the principal 
stresses is obtained by calculating the fringe order and multiplying by the material fringe 
constant.

The method of photoelasticity is based in the identification of fringes and fringe order 
and requires the use of polarizing filters. Polarizers convert randomly polarized light into 
plane-polarized light, acting like a filter of light propagation direction, allowing passage 
only of those waves that are parallel to the polarizer direction. A plane polariscope consists 
of a light source, a polarizer, the sample to be studied, and an analyzer. An analyzer is also 
a polarizing filter, but rotated to have the polarizing direction normal to the polarizer. The 
optical principles and functional description of the polariscope are well described in the 
literature (Anderson 1978; Phillips 2008; Ramesh 2000; Li 2010; Baek et al. 2014; and Ju 
et al. 2017) and are not the focus of this work.

The stress-fringe factor of a material is estimated with a calibration loading experiment 
where a sample disk made of the tested material is loaded diametrically and imaged with 
white polarized light. Colored bands appear on the image as a product of the attenuation 
and extinction of one or more colors from the white spectrum, and the sequence of colors 
is produced by an increasing stress field (Dally and Riley 1991). The fringe order, N, is 
estimated using the isochromatic band approach, where direct visual observation of the 
band color is cross-referenced to a table indicating fractional fringe order (up to a fringe 
order of approximately 4). For a diametrically loaded disk, the stress-fringe factor fσ, is 
determined by

where P is the load applied to the disk, D is its diameter, and N is the fringe order. A gela-
tin disk of similar weight concentration as that used in the fracture network experiments 
was created for each gelatin strength (Blooms 60, 100, 250, and 300). The disks were dia-
metrically loaded and imaged with white polarized light. A color sequence and fringe order 
table (Dally and Riley 1991) was used to determine fringe orders, and Eq. (34) was used to 
calculate the corresponding stress-fringe factors.

Table  1 shows calculated Young’s modulus, fracture toughness, permeability, diffu-
sion coefficient, and stress-fringe factor for the Bloom numbers of the gelatins used in this 
study. The values reported seem to cluster gelatin samples into two groups: low Bloom (60 
and 100) and high Bloom (250 and 300), because the values within these subsets are rela-
tively close, suggesting nonlinearity in rheological behavior respective to Bloom number.

(33)
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4.3  Image Analysis

Each experiment produced a set of still images that illustrates the evolution of the gas 
self-generating system and the resulting fracture network with time. The image analysis 
code that was developed in MATLAB and its GUIDE toolbox to process the acquired 
data includes a user interface that allows for fine tuning and logging of the pre-processing 
parameter values chosen for each data set. Pre-processing parameters include image crop-
ping, masking, and thresholding. Because the computational expense is too large to process 
all of the images, a function that selects a user-capped subset of images with the largest 
changes respective to the previous images is included on the interface.

The pre-process analysis has the following sequence. A source folder, where all acquired 
images are contained, is selected. The user is shown the last image as a visual reference 
for cropping and converting from RGB to grayscale to black and white (binary). A binary 
thresholding level is then manually selected by the user to correct for backlight intensity 
variations. Image selection follows where the initial image from time = 0 is subtracted from 
each binary image subset at time = t in order to normalize all images to the initial back-
ground. By calculating successive changes between one image and the next, those with the 
largest absolute change are shortlisted for a final pick of a maximum number of images set 
by the user. This maximum number is often close to 120 images in order to be computa-
tionally viable.

Nucleation sites are defined as the location where the fracture first appears. At the 
time of nucleation, a consecutive identification number or ID is assigned to the new frac-
ture, and it is preserved for the duration of the analysis. Fracture nodes are defined as the 
location(s) at which a pair of fractures connects with each other. These nodes are user-
identified on the image on which they occur and their coordinates recorded in order to 
identify fracture connection events. The elastic behavior of the system and fluctuations of 
the gas pressure cause opening and closing of the fractures. In order to track all fractures 
occurring at any time in a given location, a new set of binary cumulative fracture images 
is created from the original image subset. For each image at time = t, each new individual 
fracture is identified and labeled, while previously existing fractures are tracked in order to 
follow their evolution.

Once the pre-processing functions have been completed, all morphological features rep-
resented in the images are calculated as they change with time.

5  Results and Discussion

Numerical and experimental results are now presented. Test cases are developed with 
nucleation sites that are treated as fracture originating defects that develop into elliptical 
voids with a range of diameters. Next, a sample fracturing process run with experimentally 
valid parameters is shown and discussed. For the experimental results, an array of plots are 
displayed to illustrate the relevance of the gelatin strength on the fracture system behavior 
and development for the OL experiments, followed by a similar array showing examples of 
stress-induced light intensity maps for each gelatin strength used in the experiments at dif-
ferent stages of fracture network development. Finally, a side-by-side comparison of some 
of the numerical and experimental results is presented in order to corroborate the degree of 
agreement achieved.
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5.1  Stress Distribution Around Elliptical Void

By studying the stress distribution, we get a better sense of the nucleation mechanism of 
the fractures. As a first hypothesis, we assume the defect in the gelatin has an elliptical 
shape. When the pressure builds up within the sample, the concentrated stress around the 
fracture tip elongates the defect and eventually becomes a propagating thin crack.

To verify this hypothesis, four models were generated, all of them have an elliptical 
inclusion but with different aspect ratio as shown in Fig. 4. For a small aspect ratio and cir-
cle-like inclusion, the stress distributes evenly around the defect. When the aspect ratio is 
greater, the stress mostly concentrates on the fracture tip and with greater magnitude bends 
toward the fracture. This finding coincides with the experimental results (to be described 
later in this section), and it could be a mechanism behind the nucleation process for a sin-
gle fracture.

5.2  Fracture Network Prediction Based on Images

Ideally, we wish to predict the evolution of the fracture network without any a priori 
knowledge about the nucleation site of the fracture. This requires either (1) certain statisti-
cal information about the distribution of defects and sources in the sample or (2) knowl-
edge of the exact spatial heterogeneity in the sample. An alternative approach consists of 
populating the defect distribution directly from experimental images acquired at the time 
of nucleation. Numerical simulation is then performed to observe the growth pattern of 

Fig. 4  Numerical results: Stress distribution for elliptical voids with decreasing aspect ratios of 0.4, 0.3, 
0.2, and 0.1, from left to right

Fig. 5  Numerical results: a initial seeds of defects, b resulting fracture network, c pressure distribution 
within matrix and fractures
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fractures. In the test results shown in Fig. 5, Young’s modulus is set to 1.0 × 104 Pa, the 
critical energy release rate is 1.0 J/m2, and gas generation in the entire domain is uniform 
with a gas production rate of 0.04 cm3/min.

Figure 5a shows the initial distribution of defects (in white) on the matrix. Figure 5b 
shows that the resulting fractures maintain some distance from each other and stop after 
finding a drainage path to the boundary. In most cases, the greater the aspect ratio, the 
more likely it is that the defect propagates. If the defect is too close to the drainage bound-
ary, it tends to not propagate even if it has a large aspect ratio. Pressure tends to be larger 
toward the center of the matrix and consistently decrease toward the drainage boundaries, 
as shown in Fig. 5c.

5.3  Experimental Tests General Considerations

5.3.1  System Behavior

Once the Hele-Shaw cell is placed in the imaging area, it takes an average of 3 h for the 
gas produced by the yeast-driven sugar fermentation process to nucleate fractures. In early 
stages, fractures propagate from one or both ends until they reach an edge of the gelatin 
matrix and/or merge with another fracture. As the process develops, fractures exhibit elas-
tic behavior in that they intermittently open and close in accordance with the rate and pat-
tern of gas produced as a by-product of the sugar fermentation. At later times, some of the 
fractures completely close as the gas production in their location declines.

5.3.2  Image Analysis and Parameters

Once the image is binarized, the image analysis code identifies and tracks each of the frac-
tures that are generated and propagated in the network. A fracture network map is cre-
ated based on the image analysis and fracture tracking performed by assigning successive, 
increasing fracture ID numbers to each fracture. The fracture ID numbers are also indica-
tors of the order of appearance, such that smaller ID numbers correspond to early fractures 
and larger ID numbers correspond to late-nucleated ones. Fracture length is recorded with 
time for every individual fracture and total fractured length bases, and is reported as final 
fracture length distribution and cumulative fracture length.

Nucleation site locations for each fracture that developed are identified and mapped in 
the gelatin matrix space. Time of location is indicated via a color map. Morphology of the 
fracture network is tracked as it pertains to length, maximum growth speed, order of appear-
ance, and number of connections by way of a scatter chart, color map, and data point marker 
size, respectively. Fracture nucleation and merging events are charted together versus time 
(proxy by image number) in order to explore trends in temporal fracture emergence and 
interaction. Angles of coalescence are calculated and normalized between 0 and 90 degrees 
to help assess fracture path deflection as a result of fracture interaction and its effect on the 
gelatin matrix stress field. Fracture path deflection is a function of the stress field in the host 
matrix that in turn is dependent on fracture growth stage and interaction among fractures. 
Watanabe et al. (2002) showed in their experiments that crack deflection may occur when 
the shear stress around a crack changes the orientation of a following crack from vertical to 
parallel to the maximum compressive stress, causing it to bend toward the preceding crack, 
as previously proposed by Takada (1994). The stress caused by a fracture, however, varies 
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over time. As the pressuring fluid builds up, the fracture is drained. Therefore, the merging 
angle depends on the stress field around the cracks at the time of the merge.

5.3.3  Ordinary Light (OL) Tests

As mentioned earlier, gelatin rheology plays a critical role in characterizing the crack 
propagation process because it dials its viscoelastic behavior toward one end or another of 
the spectrum. Gelatin with small strength has a greater viscous behavior component, while 
elastic behavior takes predominance as gelatin strength increases. In this work, laboratory-
grade gelatin with measured Bloom number is used in order to establish a correlation 
between measurable parameters as described in the previous section and gelatin strength. 
This analysis is later translated to source rock geomechanical maturation behavior and cor-
related to its Young’s modulus.

Four laboratory-grade gelatins were selected according to Bloom number to cover the 
‘low’ to ‘high’ spectrum, as described by Sigma-Aldrich (2018). Selected Bloom numbers 
(in ascending gelatin strength) are 60, 100, 250, and 300. Their calculated Young’s modu-
lus according to Eq. (5) are shown in Table 1. Repeatability tests were conducted for each 
Bloom number to verify characteristic behavior for each gelatin. Selected experiments are 
referred to as OL-60, OL-100, OL-250, and OL-300 for Bloom numbers 60, 100, 250, and 
300, respectively.

5.3.4  Fracture Network Morphology

Figure 61a shows the final fracture network map for OL tests including fracture ID num-
bers. OL-60 fracture network (Fig. 61a) reveals a densely fractured gelatin matrix that adds 
up to 900 + short and lineal fractures. OL-100 (Fig. 61b) shows a significant decrease in 
fracture density and an increase in fracture length compared to OL-60, exhibiting more 
fracture path deflection. Results for OL-250 (Fig.  61c) show an intermediate amount of 
fractures between that of OL-60 and OL-100, with straighter fracture paths than OL-100, 
while OL-300 (Fig. 61d) shows the smallest number of fractures with no fracture coales-
cence and no path deflection.

Results in Fig. 61a for OL-60 then may suggest that its gelatin Kc value is widely met 
by the gas pressure generated by yeast at a large number of locations in the gelatin matrix, 
making diffusion unnecessary for gas to transport itself and resulting in a large amount 
of almost evenly spaced fractures. Due to the large frequency of nucleation, significant 
fracture spatial density is achieved and nucleated fractures quickly collide with neighbors 
thereby limiting the extent of their growth and length. In the OL-100 case (Fig. 61b), the 
increase in Kc and only modest decrease in permeability and diffusion coefficient allow 
for more gas to diffuse inside the matrix before its pressure can reach the deformation 
threshold, while at some other sites, gas accumulates and breaks through, causing nuclea-
tion and further fracturing. Therefore, fewer nucleation sites are created and those that 
develop fractures are supported by diffused gas from other locations. This results in frac-
ture growth in a larger available matrix area and longer fractures but with virtually no gas 
flow inhibition.

In the case of OL-250 gelatin (Fig. 61c), a significant increase in the Kc value along 
with a significant decrease in permeability and diffusion coefficient, as shown in Table 1, 
result in an increase of inhibited sites. Generated gas has difficulty flowing, thus creating 
less nucleation sites as compared to OL-60. There are more sites compared to OL-100 
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perhaps due to less gas diffusion capacity to carry through the matrix that in turn favors 
clusters of local pressure accumulation that result in deformation. Fractures in OL-250 
are shorter than those in OL-100 because they are less (or not) fed by neighboring diffu-
sion and have less growth space availability before colliding with another fracture. Finally, 
OL-300 gelatin’s Kc and the minimal permeability value surpass the capacity of the yeast 
system to generate enough gas to meet diffusion or deformation minimum requirements in 
most of the all sites, resulting in maximum inhibition and minimal fracturing (Fig. 61d).

Figure 62a–d provides insight into the fracture morphology for each test. OL-60 fracture 
length distribution (Fig.  62a) shows significant skew toward the left, with large counts of 
short fractures measuring less than 1  cm and the maximum length of a single fracture of 

Fig. 6  OL tests for Blooms 60–300. 6.1. Cumulative fracture networks, 6.2. Fracture length distributions, 
6.3. Nucleation sites, 6.4. Fracture length, growth and connectivity, 6.5. Fracture merging angle
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~ 4.5 cm. OL-100 distribution (Fig. 62b) shows a slightly more balanced length among the 
fractures, with most of them measuring less than 5 cm and maximum single fracture length 
of ~ 14 cm. The fracture length distribution for OL-250 (Fig. 62c) is again, skewed to the left, 
but with a flatter curve and similar counts for lengths between 0.5 and 3 cm, and a maximum 
single fracture length of 7 cm. Finally, OL-300 length distribution (Fig. 62d) spreads wider 
over the length range, with short fractures skewing the curve to the left. Notice some of these 
short fractures are little more than a freshly nucleated bubble, unable to overcome Kc.

Figure 63a–d shows nucleation site locations for each fracture developed in OL experi-
ments. The blue tones in the color bar represent early-nucleated fractures, and the green 
and red tones represent those nucleated in middle and late stages of the process, respec-
tively. Figure 63a shows that for test OL-60, early fractures (blue tones) tended to nucleate 
close to the upper left corner of the matrix, and as the network developed, nucleation sites 
migrated diagonally through the center (green-yellow tones), until late nucleation events 
clustered in the lower right corner. In Fig.  63b (OL-100), no trend of early, middle, or 
late nucleation sites is significantly observed, while in Fig. 63c (OL-250), the trend from 
OL-60 is loosely repeated. Finally, Fig. 63d (OL-300) shows all fractures tended to appear 
in the upper diagonal of the matrix, most of them near the edges. It is proposed that stress 
field dynamics on each test may be playing a role in the description of the nucleation sites 
distribution, but more investigation is required.

Figure 64a–d illustrates the morphology of the fracture network pertaining to the length, 
maximum speed reached, order of appearance, and number of connections of the fractures 
in OL experiments. The bubble size indicates the number of connections of the fracture 
and bubble color indicates timeframe of nucleation: early (blue shades), middle (green 
shades), or late (red shades). The x-axis correlates with the final fracture length and the 
y-axis with its maximum velocity.

Figure 64a shows that the short fractures that occurred in OL-60 tended to grow fast, 
relative to the maximum speed of the other samples, and most connected at least once with 
another fracture. Fractures in OL-100 (Fig. 64b) were, on average, the fastest growing frac-
tures of the group and only about half of them coalesced with another fracture. Data in 
Fig. 64c show that while fractures tended to be medium sized, they were also slower grow-
ing than lower Bloom samples, OL-60 and OL-100, with a large ratio of connected frac-
tures versus single ones. Finally, fractures in OL-300 (Fig. 64d) spanned the smallest to 
medium size length and showed the slowest growth and zero connectivity.

Figure  65a–d shows the merging angle for the merging events that occurred in OL 
tests 60, 100, and 250 (no merging events were registered for OL-300). Merging angles 
were normalized to vary between 0 and  90o between the fractures. Angles in the range 
from 0 to  45o are called ‘low angle,’ while angles larger than  45o are referred to as ‘high 
angle.’ Merging angles are especially significant when there is an observable fracture path 
deflection in at least one of the fractures that merges, because it implies the stress field 
has exerted some influence on the deflection. Deflection is significant only in OL-100 
(Fig.  65b), where fractures follow more curved trajectories. Both OL-60 (Fig.  65a) and 
OL-250 (Fig. 65c) have shorter fractures that are mostly straight, and there are no merging 
events in OL-300 that can make this variable relevant in that case.

Figure 7 shows sample gas production curves for OL tests. Here again we found a cluster-
ing effect on the curve slopes into low (OL-60 and OL-100) and high (OL-250 and OL-300) 
Bloom number. While the final produced gas volume totals about 40 cm3 for all tests, the 
production rate is greater for the low Bloom number group. As observed in Fig.  3b, the 
bottle that holds the gelatin used to measure gas production is not subject to the same stress 
field as that inside the Hele-Shaw cell. Therefore, the gas production curves indicate that 
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all gelatins hold the potential to produce about the same amount of gas, but the array of the 
gelatin matrix matters to the point of inducing significant variability in the results.

Table 2 summarizes the average values of measured and calculated parameters for OL 
tests including nucleation events, fracture cumulative length, average distance of fracture 
nucleation site to center, fracture density, maximum fracture velocity and average pres-
sure, gas production, and merging to nucleation ratio. The variables per se do not show 
a discernible trend. Thus they need to be explained within the context of the synergy of 
transport mechanisms previously discussed. Maximum average pressure, calculated using 
Eq. (3), shows an increasing trend with Bloom number, with the exception of Bloom 100 
gelatin. In that case, maximum average pressure shows a decrease. This is due in part to the 
longer fractures developed in this sample. As the average fracture length values in Table 2 
show, Bloom 100 gelatin has the largest number of all, more than twice the second larg-
est value (Bloom 250). As Eq. (3) teaches, fracture propagation pressure is inversely pro-
portional to fracture length. Thus, a very large cumulative fracture length overcame other 

Fig. 7  Measured gas production 
for ordinary light (OL) tests

Table 2  Results summary for ordinary light tests

Property Bloom number

60 (OL-60) 100 (OL-100) 250 (OL-250) 300 (OL-300)

Nucleation events 930 32 173 9
Distance nucleation to center (cm) 7 15 20 8
Fracture cumulative length (cm) 920 150 375 17
Average fracture length (cm) 0.99 4.68 2.16 1.88
Fracture density (#fractures/cm2) 2.3 0.071 0.4 0.022
Max. fracture velocity (cm/s) 1 × 10−6 5 × 10−6 5 × 10−7 8 × 10−7

Max. average pressure (Pa) 2378.4 1127.5 4993.67 14,254.67
Length distribution skew left even left left
Coalescence angle distribution even high high N/A
Total gas production  (cm3) 42 38 30 35
Merging to nucleation ratio 0.54 0.81 0.45 N/A
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factors, such as gelatin fracture toughness, to ultimately decrease the maximum average 
pressure from what the trend would have predicted.

5.3.5  Polarized Light (PL) Tests

The stress field on the source rock matrix depends strongly on geomechanical factors such 
as Young’s modulus and Poisson’s ratio, and the analog material is no different. Fracture 
network development also has a corresponding effect on the stress field. The next steps 
involve studying the response of the fracture network to varying gelatin Young’s modu-
lus, as well as using photoelasticity principles that use gelatin birefringence to image 
the dynamics of the stress field and fracture propagation. The experimental observations 
described so far need to be complemented with the study of the transient stress field of the 
tests.

Photoelasticity tests were carried out as an exploratory step to help understand what 
to expect of the technique when applied to the experimental setup, as described in Fig. 3. 
To achieve this, the setup was fitted with polarizer filters at 90 degrees rotation difference 
between the light source and the Hele-Shaw cell, and on the camera lens. RGB images 
were acquired under the same parameters as the optical light experiments, but a smaller 
area was selected for imaging, in order to improve image resolution. Thus, final resolution 
achieved for all experiments oscillates between 0.26 and 0.30 mm/px. In order to improve 
visualization of the light intensity captured by each image, the original RGB format was 
converted to grayscale and a color map applied.

Fig. 8  Light intensity maps for selected areas from representative experimental birefringence images 
(polarized light tests)
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Figure 8 shows grayscale light intensity maps for selected representative areas after pro-
cessing during several stages of the fracture propagation test: nucleation, early growth, late 
growth and coalescence, for each gelatin strength tested. In Fig. 8, greater light intensity 
areas are on the red end of the colormap spectrum, while low light intensity or unfrac-
tured areas are darker. The image sequence shows that significant changes in light intensity 
occur as the test progresses. Here again, a clustering of results is observed in terms of 
low (60–100) and high (250–300) Bloom number. Low Bloom number gelatins (Fig. 8a, 
b) tend to exhibit smaller stress value ranges than their high Bloom number counterparts 
(Fig. 8c, d). At nucleation time, there is stress (proxied by light intensity) all around the 
nucleation site, and in the early stages of growth, the stress continues longitudinally and at 
the tip of the fractures. For small Bloom samples, stress seems to have a stronger presence 
on only one side of the fracture axis, while larger Bloom samples show stress development 
on both sides of the fracture. At late growth stages, stress locates mostly at the tip of the 
fractures, virtually disappearing from the fracture length. During fracture merging, a con-
centration of stress (via an increase in light intensity) is observed. Overall, it is observed 
that light intensity increases in magnitude with Bloom number in all the fracture propaga-
tion stages illustrated.

In order to estimate stress magnitude from photoelasticity images, fringe order must be 
determined from the original RGB format following the same procedure as for the fringe-
stress factor calibration tests. RGB colors observed around the fractures were correlated to 
those tabulated in the referenced color sequence-fringe order table, and fringe orders were 
estimated for each sampled fracture. Using Eq. (33) and the fσ values shown in Table 1, the 
experimental difference of principal stresses for each gelatin was estimated from a sample 
fracture and are plotted in Fig. 9.

6  Numerical Compared to Experimental Results

The sum of the results observed in Figs. 6, 7, and 8 indicate that the gas flow mechanisms 
that govern the fracture nucleation and propagation have a strong dependence on gelatin 
strength (proxy by Bloom number) and lead to distinct outcomes. Because all other factors 

Fig. 9  Comparison of experimental and numerical results: a cumulative fracture length and b principal 
stress difference. Note good agreement of principal stress differences
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being equal, gelatin strength is a strong indicator of its predominant rheological behavior 
(viscoelastic spectrum), results seem to suggest that the gas flow mechanism that dom-
inates the fracturing process is a function of gelatin rheology, in particular, its Young’s 
modulus and diffusion coefficient. Additionally, the gelatin matrix stress field behaves 
dynamically with the fracture network development and interactively determines the final 
array of fractures that result in each test. Therefore, gas flow mechanism selectivity is also 
dependent on the transient behavior of the stress field, and the description below needs to 
be coupled with a stress field component. It is proposed that the most relevant gas transport 
mechanisms involved in this process are diffusion and deformation, and they are dominant 
at different degrees for each of our sample tests. It is also proposed that these mechanisms 
are subject to be inhibited at variable degrees by the gelatin fracture toughness Kc, which is 
in turn a function of its Young’s modulus, as expressed by Eq. (3).

Figure 9 shows comparative plots of (a) cumulative fracture length and (b) estimated 
principal stress difference values calculated for numerical and experimental methods. Fig-
ure 10 shows numerical and experimental fracture network comparative results for gelatins 
of Bloom 60 to 300 on a 3 cm by 3 cm sub-domain. Comparing experimental and numeri-
cal results as presented in Figs. 9 and 10, a reasonable agreement is observed. Principal 

Fig. 10  Experimental results compared to numerical results for evolved fracture network on gelatin in a 3 
by 3 cm domain. Bloom number in the left column, experimental result in the center column after image 
analysis and binarization to identify fractures, and the simulated result in the right column
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stress differences show acceptable agreement between experiments and numerical model 
results. In the numerical simulation, fracture networks seem to show coarser differentia-
tion among Bloom numbers, with results tending to cluster into ‘low’ (60–100 Bloom) and 
‘high’ (250–300 Bloom). This indicates that the general linear trend of the fracture net-
work correlated with gelatin strength is being correctly captured by the numerical model. 
Some of the non-monotonic trend of the fracture density with Bloom number, Fig. 9a, was 
not captured, probably because the mechanical and flow parameters used in the numerical 
model are first-order linearized approximations of material behavior. The non-monotonic 
trend requires much more detailed material tests that are currently beyond our scope.

Figure 11 shows a qualitative comparison of (a) numerically generated stress fields for 
type I opening mode, (b) simulation using the experimental parameters, and (c) a repre-
sentative example of stress-induced, experimentally acquired light intensity map similar 
to those shown in Fig. 8. Importantly, Fig. 11c displays the typical response found in early 
or late stages of fracture growth (depending on gelatin strength) within our image data set.

The orientation of model stress distribution and experimental photoelastic imaging 
(Fig. 11b, c) differ from that of classical model I fracture stress distribution as shown in 
Fig.  11a. Most literature refers to mode I as the default opening mode, but in the case 
where external force is applied to the crack inner boundary instead of a far-field force, 
the resulting stress distribution is significantly different. Importantly, notice the agreement 
between Fig.  11b and c, where the stress lobes and stress-induced fringes, respectively, 
incline toward the central portion of the fracture as compared to those shown in Fig. 11a, 
for type I mode, that incline toward the fracture tip.

Figure 12 shows additional numerical model results that are useful for comparison to 
experiments, specifically Fig. 8. Figure 12 shows the relative stress field at Bloom numbers 
of 60 and 100. Red is large stress and blue is low stress. As the Bloom number increases in 
Figs. 8 and 12, the stress concentration increases indicating consistency among the numeri-
cal and experimental results. Note that the Bloom 100 results in Fig. 12 show significant 
stress concentration at nucleation, early time, and late time stages as compared to Bloom 
60. The merge events in Fig. 12 likewise show significant realism with stress concentration 
immediately before fractures join.

Fig. 11  Stress distribution at crack tip for a type I opening mode, b numerical model, and c stress-induced 
light intensity map for photoelastic experiments. Note the difference in the stress distribution when force is 
applied on the crack inner boundary in (b) and (c)
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7  Future Work

The stress field on the source rock matrix depends strongly on geomechanical factors such 
as Young’s modulus and Poisson’s ratio. The analog material mimics these dependen-
cies. Fracture network development also has a corresponding effect on the stress field. The 
results presented agree on this point. Further benchmarking of the numerical model and 
definition of the mechanisms that control fracture network development shall be conducted. 
We plan to  refine further the numerical model implementation to be scalable to a large 
computation domain and extend the approach to 3D. This requires a faster linear solver 
and preconditioner for the iterative solver. We also want to incorporate the mechanism of 
interaction and merging with natural fractures. For fluid simulation, current Lagrange poly-
nomial interpolation does not preserve fluid mass at the element level. Therefore, we plan 
to use the discontinuous Galerkin method to model multiphase flow to have better stability 
behavior for the transport problem. An unresolved experimental issue is extension of the 
gelatin verification data set to 3D because such experiments are difficult to visualize in real 
time.

8  Conclusions

Experimental and simulated stress fields reveal that fractures resulting from internal gas 
generation are similar to, but not identically, type I opening mode. The normal force 
applied on the fracture surface due to internal gas generation caused the stress concentra-
tion to distribute differently from classical type I. Importantly, the simulated and experi-
mental fracture networks agree qualitatively and we have found that aspect ratio of the 
stress contour serves as a good indicator for the tendency of fracture propagation.

The numerical model proposed has shown that the phase-field fracture propagation 
approach has the capability to validate numerically the hypothesis derived from experi-
mental observations that internal gas generation may generate fracture networks. Numeri-
cal benchmark tests were conducted to validate model accuracy. Along with birefringence 

Fig. 12  Numerical results: Stress distribution at various stages during the fracture generation process
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results, we demonstrated that fracture propagation in maturing gelatin analogs indeed 
results from internal pressure buildup. The agreement of the detailed fracture merging 
behavior showed the validity of the variational fracture criterion. Finally, we simulated the 
fracture network with random initial defects. The resulting fracture pattern indicated that 
the optimal fracture spacing and the number of drainage pathways are a strong function of 
the material elasticity parameter.

Using an experimental analog material as a proxy for source rock maturation allows for 
the sample to be imaged optically at time and length scales X-rays cannot achieve. Gela-
tin rheological behavior includes a brittle-elastic spectrum that approximates that of the 
brittle-elastic deformation of source rock. By observing the crack formation and propaga-
tion of the gelatin medium with internal gas generation provided by yeast fermentation, we 
characterize the experimental fracture network development and extract metrics that are 
translated into a corresponding numerical model. Image analysis of the series of repeat-
able laboratory-scale experiments revealed trends in fracture network development and 
characteristic parameters. The gelatin matrix stress field was inferred to exert strong influ-
ence on these observed results: nucleation sites, fracture orientation, fracture connection 
angles, and merging to nucleation ratios. The stress field is in turn dependent on the matrix 
rheological properties that for gelatin lay within a viscous-elastic spectrum that establishes 
the balance between gas transport mechanisms such as diffusion and deformation. The 
observed fracture network behavior was consistent with fracture mechanics predictions.

The mechanical properties of the gelatin vary with Bloom number that is a proxy for 
their Young’s modulus. Based on the response obtained in the Hele-Shaw experiments, 
small Bloom numbers have a significant viscous response while greater Bloom numbers 
tend to display elastic behavior. Correlations were found between gelatin Bloom number 
(i.e., Young’s modulus) and measured and calculated parameters such as fracture length, 
fracture velocity, angle of merging, fracture connectivity, and so on. Mechanisms include 
gas diffusion through the gelatin matrix and gas pressure-induced fracturing of the gelatin 
matrix. The predominance of one or the other mechanism varies nonlinearly with Bloom 
number.

Photoelasticty techniques and gelatin birefringence allowed for visualization of stress-
induced light intensity variations around individual cracks and over whole fracture net-
works. At nucleation time, large stress areas were observed at the ‘corners’ around the 
nucleation site. As the fracture grows, high-stress zones were observed at the growing frac-
ture tip(s) and across the fracture’s length. After a particular fracture length, large stress 
zones are observed only at the fracture growing tip(s). Additional large stress is observed 
at the site and time of fracture merging. Stress magnitude increased with gelatin strength.
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