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Abstract
The use of upscaled models is attractive in many-query applications that require a large number of simulation runs, such as
uncertainty quantification and optimization. Highly coarsened models often display error in output quantities of interest, e.g.,
phase production and injection rates, so the direct use of these results for quantitative evaluations and decision making may
not be appropriate. In this work, we introduce a machine-learning-based post-processing framework for modeling the error
in coarse-model results in the context of uncertainty quantification. Coarse-scale models are constructed using an accurate
global single-phase transmissibility upscaling procedure. The framework entails the use of high-dimensional regression
(random forest in this work) to model error based on a number of error indicators or features. Many of these features are
derived from approximations of the subgrid effects neglected in the coarse-scale saturation equation. These features are
identified through volume averaging, and they are generated by solving a fine-scale saturation equation with a constant-in-
time velocity field. Our approach eliminates the need for the user to hand-design a small number of informative (relevant)
features. The training step requires the simulation of some number of fine and coarse models (in this work we perform
either 10 or 30 training simulations), followed by construction of a regression model for each well. Classification is also
applied for production wells. The methodology then provides a correction at each time step, and for each well, in the phase
production and injection rates. Results are presented for two- and three-dimensional oil–water systems. The corrected coarse-
scale solutions show significantly better accuracy than the uncorrected solutions, both in terms of realization-by-realization
predictions for oil and water production rates, and for statistical quantities important for uncertainty quantification, such as
P10, P50, and P90 predictions.

Keywords Upscaling · Machine learning · Uncertainty quantification · Reservoir simulation · Classification · Error
modeling · Random forest · Surrogate model

1 Introduction

Field measurements in subsurface flow applications are
almost always sparse, so there commonly remains a high
degree of uncertainty in the geological description. For
this reason, in a comprehensive simulation study, a large
number of plausible realizations, generated such that they
are consistent with measured data and the prior geological
concept(s), are generated. Because geological features at a
variety of scales can impact subsurface flow behavior, these
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models typically contain a high degree of resolution. The
simulation of a large number of high-fidelity models can
be very expensive, however, and for this reason, upscaling
(or coarsening) procedures are commonly applied. The flow
responses from upscaled models generally contain some
error relative to the responses for the corresponding fine-
scale models. Thus, if coarse-scale models (CSMs) are
to be used for practical decision making and uncertainty
quantification (UQ), these errors must be quantified.

Our goal in this paper is to apply a recently devel-
oped machine-learning framework to model the time-
instantaneous errors in a specified set of quantities of inter-
est, or QoI. In this work, the QoI correspond to the time-
varying injection and phase production rates for all wells
in the model. The general framework, referred to as error
modeling using machine learning (EMML), was described
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in an earlier study [52]. In that work, approximate results
were computed using a reduced-order modeling approach
based on proper orthogonal decomposition and trajectory
piecewise linearization [7, 23, 53], and QoI error using
this method was successfully modeled using the EMML
framework.

The EMML methodology requires a set of error
indicators or features, which are used in the statistical
regression (random forest [5] in this work) applied for
error modeling. In this paper we use the term “features”
to refer to quantities used as error indicators. These are
distinct from geological features, though of course error
is impacted by aspects of the geological model. Various
treatments, including the modeling of both absolute and
relative errors, were considered in [52], and the best-
performing approaches were identified. In this work, a key
intent is to provide features that characterize the subgrid
effects neglected in the CSM. An important strength of
our procedure is that a large number of features can be
considered, i.e., the user is not required to select a small
number of the most informative features. As is the case
with all regression-based methods, some amount of training,
which entails the simulation of high-fidelity models (HFMs)
and the construction of the regression-based error model, is
required in a preprocessing (offline) step.

A variety of upscaling methods have been developed
for use in reservoir simulation problems (see, e.g., [15]
for a detailed discussion). In highly coarsened models,
accurate results can be achieved if both permeability
and relative permeability are upscaled, though the latter
requires substantial upscaling computation. Therefore,
in this work, we upscale only single-phase parameters
(absolute permeability and porosity). We apply a global
single-phase transmissibility upscaling method, as this
approach provides (essentially) the most accurate coarse-
scale models [9, 10, 55], along with the global fine-scale
velocity field (which we reuse in the error modeling
procedure). Although this upscaling technique requires the
global solution of the steady-state single-phase pressure
equation, it is still less expensive computationally than
relative permeability upscaling.

CSMs have been used in previous studies to solve compu-
tationally demanding many-query problems. For example,
CSMs were applied for UQ [3, 8, 11, 30, 35, 45], in
inverse modeling [2, 16, 26, 33, 34], and for optimization
[1, 29]. The ensemble-level upscaling procedure, introduced
in [8] and applied for UQ, shares some similarities with
the EMML-based framework applied here. In this approach,
upscaled relative permeability curves for the coarse blocks
in a few training realizations are computed in a prepro-
cessing step. An appropriate curve is then assigned statisti-
cally to each grid block in new coarse-scale models based
on efficiently computed features. The transmissibilities in

the CSMs are constructed using a single-phase upscaling
procedure. The method has since been extended to three-
dimensional well-driven flow systems [11] and to oil-gas
compositional problems [30]. Lødøen et al. [35] also used
CSMs constructed using local or local-global upscaling
techniques, along with upscaling error models, for UQ. In
subsequent work, they used CSMs, generated using har-
monic averaging of permeability, in conjunction with error
models, for inverse modeling [33, 34]. In these studies,
the error in the QoI was modeled using a linear regression
model, which was constructed with the coarse-scale QoI as
the independent variable. See Omre and Lødøen [39] for
more details.

Scheidt et al. [45] modeled upscaling error in the QoI using a
distance-based clustering procedure. In this approach, the
coarse-scale QoI prediction is first assigned to a particular
cluster, where the error in the QoI is known at the
cluster center (this error is computed in an offline step by
performing both fine- and coarse-scale simulation). During
the online stage, the error in the QoI is assumed to be
constant over the cluster. Similarly, Glimm et al. [20] used
a Gaussian process (kriging) to model the error introduced
due to coarsening. Other statistical techniques, such as
a functional principal-component-analysis-based approach,
as presented by Josset et al. [25] in the context of a proxy
model, could also be employed. However, as demonstrated
recently by [12, 38], the direct modeling of QoI error
(as performed in the above-mentioned studies) may be
problematic if there is a complex dependency, such as an
oscillatory or highly nonlinear relationship, between the
error and the CSM prediction.

In this work, we apply a high-dimensional regression
technique, random forest, to model the upscaling error, for
each well at each time step, based on a set of features. As
discussed by [13, 17, 18], CSM error results from neglected
subgrid effects. Using the methods described in these and
related papers, it is possible to construct improved CSMs.
Our intent here, however, is to instead compute features
that represent the neglected effects and to use these fea-
tures within the EMML framework. This is accomplished by
solving an approximate fine-scale saturation equation, with
a constant-in-time velocity field, to provide estimates of
subgrid (fluctuating) quantities. The EMML training dataset
is generated by simulating both the HFM and the corre-
sponding CSM, obtained using upscaling, for a fraction of
the realizations in the ensemble. An error model is then
constructed from the EMML training dataset based on a pre-
scribed set of features. Classification is also applied to dis-
tinguish pre- versus post-water-breakthrough behavior. For
new (test) realizations, we estimate the error from the
regression model and the features, and then use this estimate
to correct the coarse-scale QoI. We demonstrate the applica-
tion of this framework for UQ in two- and three-dimensional
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oil–water problems. The approaches presented here should
also enable the use of CSMs in optimization or data assimi-
lation problems.

This paper proceeds as follows. In Section 2, we present
the governing equations for both the fine- and coarse-scale
models. The subgrid terms neglected in the CSM are then
discussed. We next present the EMML framework as spe-
cialized for the oil–water upscaling problem. This includes
using estimates of the neglected subgrid effects as features.
Results demonstrating the application of the EMML frame-
work for two systems are presented in Section 3. Con-
cluding remarks are provided in Section 4. The Appendix
provides a brief overview of random-forest regression.

2 Problem description and error modeling

In this section, we describe the HFM and CSM represen-
tations for two-phase oil–water systems. We discuss our
estimates of the subgrid effects, which are used as features,
and we then describe the overall EMML framework. For full
details on the EMML methodology, see [51, 52].

2.1 Fine-scale equations

We consider an isothermal two-phase oil–water system with
no mass transfer between the phases. Neglecting capillary
pressure and (for now) gravitational effects, the governing
equations for phase j , where j = o,w denotes the oil and
water phase, are

∂

∂t

(
φρjSj

) + ∇ · (
ρjvj

) + ρj q̃j = 0, (1a)

vj = −λjk · ∇p. (1b)

Here t is time, φ is porosity, ρj , Sj and vj are phase density,
saturation and velocity, q̃j denotes the well phase flow
rate per unit volume (positive for production wells), k is
the absolute permeability tensor, λj = krj /μj is the phase
mobility, with krj (Sj ) the relative permeability and μj the
phase viscosity, and p is pressure. From hereon, we denote
Sw by S.

In our simulations, well bottom-hole pressures (BHPs)
are specified in all cases. Thus, the output QoI correspond
to the time-varying volumetric phase flow rates qj (units of
volume/time) at the production and injection wells. If rates
were specified, the QoI would include BHPs.

For a well located in grid block d ∈ D := {d1, . . . , dNw },
where Nw is the total number of wells, the volumetric phase
flow rate is given by the usual Peaceman [40] well model:

(qj )d = WId

(
λj

)
d
(pd − pw) . (2)

Here, WId denotes the well index, which depends on
well-block properties and the wellbore radius, pd is the

well-block pressure, and pw is the wellbore pressure. Note
that (qj )d = (q̃j )d�d , where �d is the volume of well block
d. The set of production wells is denoted by DP and the set
of injection wells by DI . Thus, D = DP ∪DI , and the total
number of wells is Nw = |D| = |DP | + |DI |, where |·|
denotes the cardinality of the set.

Standard finite-volume discretizations are applied in this
work (including the representation of source terms using the
well model in Eq. 2). The state vector xf for the fine-scale
model at a particular time step, computed by solving the
discretized system, is denoted by

xf = [
p1 S1 · · · pNc SNc

]T ∈ R
2Nc , (3)

where Nc is the number of grid blocks in the HFM.
Assuming incompressible fluid and rock, we can

rearrange Eq. 1a into so-called pressure and saturation
equations. This representation, which will be useful when
we apply volume averaging in the development below,
yields the following equations

∇ · [λtk · ∇p] = q̃o + q̃w, (4a)

φ
∂S

∂t
+ ∇ · [vt f (S)] = −q̃w, (4b)

where f (S) = λw/λt is the Buckley-Leverett flux function,
λt = λo + λw is the total mobility, and vt = vo + vw =
−λtk · ∇p is the total Darcy velocity.

2.2 Coarse-scale equations

The coarse-scale governing equations involve replacing
the permeability tensor k with the effective (equivalent
or upscaled) grid block permeability k∗ for each of the
N∗

c coarse blocks. In our actual implementation, we use
upscaled transmissibility T ∗ rather than k∗, although we
continue to express the coarse-scale equations in terms of
k∗. We also upscale the porosity φ to φ∗ (in a manner that
conserves pore volume from the set of fine-scale blocks to
the corresponding coarse-scale block), and the well index
WI to WI ∗. Figure 1 shows a schematic of the grid blocks
corresponding to the HFM and the CSM. The coarse-scale
grid is represented by thick black lines, while the fine-scale
grid is represented by thin gray lines.

In this study, we apply global single-phase transmissi-
bility upscaling (SPTU) [10, 30, 55] to compute T ∗ for
each interface and WI ∗ for each well block. This approach
requires the solution of the steady-state single-phase fine-
scale pressure equation, but it avoids the two-phase flow
computations required for two-phase upscaling. Further,
among the different single-phase upscaling techniques,
global single-phase upscaling appears to provide the most
accurate coarse models [10, 15, 55]. For more details on
upscaling and a discussion of different upscaling tech-
niques, see [14, 15].
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Fig. 1 Schematic showing a
fine-scale (50 × 50) and coarse-
scale (5 × 5) grids, and b a local
two-coarse-block region. In (a),
× indicates a production well
and •◦ indicates an injection well

When using the single-phase upscaled parameters in the
coarse-scale two-phase model, the equations are taken to be
of the same form as Eq. 4a. Specifically, the coarse-scale
equations can now be expressed as

∇ · [
λt (S

c)k∗ · ∇pc
] = q̃c

o + q̃c
w, (5a)

φ∗ ∂Sc

∂t
+ ∇ · [

vc
t f (Sc)

] = −q̃c
w, (5b)

where the superscript ∗ designates a precomputed coarse-
scale parameter, and superscript c indicates a coarse-scale
variable. The relative permeability function krj = krj (S

c)

and viscosity μj are the same as on the fine scale. The total
velocity, vc

t , is now given by vc
t = vc

o + vc
w = −λt (S

c)k∗ ·
∇pc. For a well in the coarse well block d, the volumetric
phase flow rate is given by

(qj )
c
d = WI ∗

d

(
λj

)
d

(
pc

d − pw

)
, (6)

where (qj )
c
d = (q̃j )

c
d�c

d , with �c
d the volume of coarse well

block d. The state vector xc, computed by simulating the
CSM, is denoted by

xc =
[
pc

1 Sc
1 · · · pc

N∗
c

Sc
N∗

c

]T ∈ R
2N∗

c . (7)

For a given geological realization, to compute the upscaled
transmissibility T ∗ for each coarse block-to-block interface
and the upscaled well index WI ∗ for each coarse block
containing a well, we solve the fine-scale incompressible
single-phase pressure equation, with the flow driven by the
wells:

∇ · (k · ∇p) = q. (8)

The upscaled transmissibility is then computed as

T ∗
i+ 1

2
= qc

pi − pi+1
, (9)

where qc = ∑
j∈i+ 1

2
qj is the sum of the fine-scale flux

contributions qj through coarse interface i + 1
2 , and pi and

pi+1 are the bulk-volume average of the fine-scale pressure

over coarse blocks i and i+1, respectively. These quantities
are defined with reference to Fig. 1b. Similarly, we compute
the upscaled well index WI∗ as in [10]. Using the solution
of Eq. 8, we also compute the constant-in-time single-phase
velocity field, designated v1p and given by v1p = −k · ∇p.
This quantity will be required for the construction of some
of the features used in the EMML framework, as we will see
in Section 2.4.

2.3 Volume averaging for modeling of subgrid
effects

We apply the volume averaging procedure described in
[13] to characterize the upscaling error that results from
the neglected subgrid effects. This averaging provides an
equation for the neglected quantities, which in turn enables
us to identify some potential features (error indicators) for
use in the EMML framework. For any variable ψ(x, y)

defined on the fine scale, we can write

ψ(x, y) = ψ(xc, yc) + ψ ′(x, y), (10)

where ψ(xc, yc) = 1
�c

∫
�c ψ(x, y)d�c is the volume

average (coarse-scale) quantity, and ψ ′(x, y) is the spatially
varying fluctuating (subgrid) quantity. In a single coarse
block, ψ(xc, yc) is constant, and ψ ′(x, y) varies from fine
cell to fine cell, with an average of zero.

Our focus for now will be on the saturation Eq. 4b, since
subgrid effects can have a large impact on phase transport.
Using the representation in Eq. 10, we write

S(x, y) = S̄(xc, yc) + S′(x, y), (11a)

f (S(x, y)) = f̄ (xc, yc) + f ′ (S(x, y)) , (11b)

vt (x, y) = vt (x
c, yc) + v′

t (x, y). (11c)

Substituting these expressions into Eq. 4b, we have

φ∗ ∂(S + S′)
∂t

+ ∇ · [
(vt + v′

t )(f + f ′)
] = 0, (12)
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where, for simplicity, we have omitted the source term.
Averaging Eq. 12 over the volume �c, and using the fact

that ψ ′ = 0 and ψ = ψ , we have

φ∗ ∂S

∂t
+ ∇ ·

[
vt f + v′

t f
′
]

= 0. (13)

Recall that the overbar denotes the volume average over
all fine-scale blocks inside a coarse block. By comparing
Eqs. 5b and 13, we observe that, assuming Sc ≈ S and
vc
t ≈ vt , the unmodeled subgrid effects in Eq. 5b derive

from neglecting v′
t f

′ and from the fact that f 	= f when f

is a nonlinear function of S. It was shown in [13] that these
terms depend, to leading order (i.e., neglecting terms that are
third-order in fluctuating quantities), on v′

t S
′ and S′S′. It is

therefore appropriate to use v′
t S

′ and S′S′, and the quantities
on which they depend, as features in the EMML framework,
since they are directly related to the upscaling error.

Towards this goal, we next present equations for the
fluctuating quantities S′, v′

t S
′ and S′S′. Subtracting Eq. 13

from Eq. 12, we obtain the equation for the fluctuating
quantity S′ as

φ∗ ∂S′

∂t
+ ∇ · [

vt f
′ + v′

t f
] = 0. (14)

Following [13], the transport equations for v′
t S

′ and S′S′ are
derived by multiplying Eq. 14 with v′

t and S′, respectively,
followed by volume averaging. This gives

φ∗ ∂(v′
t S

′)
∂t

+ v′
t∇f ′ · vt + f ′v′

t∇ · vt +
f̄ v′

t∇ · v′
t + v′

tv
′
t∇f̄ = 0, (15a)

1

2
φ∗ ∂(S′S′)

∂t
+ S′∇f ′ · vt + S′f ′∇ · vt +

f̄ S′∇ · v′
t + S′v′

t · ∇f̄ = 0. (15b)

The neglected terms described above are directly relevant
to the saturation equation. Efendiev and Durlofsky [18]
additionally estimated the subgrid effects neglected in the
coarse-scale pressure equation given in Eq. 5a. For this
equation, subgrid effects involve terms such as fSλS(S)v′

t S
′

and fS(S)λS(S)vt S′S′, where fS = df /dS and λS =
dλt/dS. These terms can also be estimated in terms of the
features defined below.

2.4 Error modeling for upscaling

Our intent in this work is to model the actual error in the
output QoI at each time step,

(δn
q (m))d := (qn

f )d − (qn
c )d , n = 1, . . . , Nt , d ∈ D. (16)

Here, (δn
q (m))d ∈ R, d denotes the coarse well block,

subscript q denotes the QoI, i.e., q = o,w, inj , with o

the oil production rate, w the water production rate and

inj the water injection rate, superscript n denotes the time
step, Nt is the total number of time steps, m indicates
the geological parameters corresponding to a particular
HFM, (qn

f )d = (qn
f (m))d is the QoI from the fine-scale

simulation, and (qn
c )d = (qn

c (m))d is the QoI from the
coarse-scale simulation. This error originates from the fact
that we perform the simulation on the coarse-scale model
(obtained using the SPTU technique), instead of the fine-
scale model.

From Eq. 6, we see that (qn
c )d depends directly on the

coarse well-block pressure and saturation. Since the errors
in these quantities are correlated to the subgrid effects, it
follows that (δn

q )d is correlated to the neglected subgrid
effects in the coarse well block d. These subgrid effects
are described by Eqs. 13, 14 and 15a, b, and involve
the terms with fluctuating quantities. However, to compute
these fluctuating quantities during the online computations,
we require the fine-scale solution, which is unavailable
since our intent is to perform only coarse-scale simulations
during the online stage.

To obtain an estimate of these fluctuating quantities, we
instead solve a simplified (and computationally efficient)
fine-scale transport equation:

φ
∂Sa

∂t
+ ∇ · [

v1pfa
] = −qw/ρw. (17)

Here, v1p is the constant-in-time velocity field com-
puted while performing global single-phase upscaling (as
described in Section 2.2), Sa is the saturation associated with
this equation, fa = f (Sa), where f (S) is the same nonlin-
ear flux function as in Eq. 4b, and all other variables are as
previously defined. Solving Eq. 17 is relatively inexpensive
since it involves a constant-in-time velocity field. Recall that
in (fine-scale) Eq. 4b, vt changes at each time step and must
be computed through the solution of the pressure equation.
Using the solution of Eq. 17, we estimate the fluctuating
quantities at the well blocks d ∈ D. These estimates are
then used as features.

For example, for a well located in the coarse well block
d, the QoI error (δn

q )d may be correlated to the quantity

(S′S′)n, which appears in Eq. 15b. Thus, using the solution
of Eq. 17, we approximate (S′S′)n in well block d as
(
S′

a

)i

d

(
S′

a

)i

d
, where i is the time index such that (Sa)

i
d ≈

(Sc)nd . Similarly, we identify
(
v′
t f

′)n, which appears in
Eq. 13, as a potential feature and estimate it (for well block

d) as (v′
1p)d

(
f ′

a

)i

d
. We also include in the features global

quantities such as the total simulated time tn and the pore
volume injected (PVIn). Other realization properties such
as the well-pair volumes (WPV) and the well-allocation
factors (WAF) (described in more detail in Section 2.6)
corresponding to both the CSM and the HFM are also
included.
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Some of the features used in this work are shown in
Table 1. In the table, f n ∈ R

1×Nf , n = 1, . . . , Nt , (·)nd
refers to a coarse-scale quantity corresponding to the coarse
well block d ∈ D at time step n, and (·)id refers to the
fine-scale quantity, obtained by solving Eq. 17, for all the
fine-scale cells in the coarse well block d at time step i.

Recall that the time step i is chosen such that (Sa)
i
d ≈ (Sc)nd ,

which acts to “align” the coarse-scale and approximate fine-
scale solutions. The features f n are computed using the
solutions of Eq. 5a, b and 17.

Note that some of the features shown in the table, and
many additional features that are included in the set but
are not displayed in the table, involve various combinations
(products) of terms. Although many of these combinations
do not appear directly in the governing equations, we
expect that their inclusion in the feature set will act to
capture higher-moment type effects and will thus enrich the
representation. In this way we specify a fairly exhaustive
set of features. Since some features in F will be highly
correlated among themselves, as described in [52], we
remove such highly correlated features in a preprocessing
step by computing the feature-feature Pearson correlation
coefficient for all pairs. Refer to [21] for further details
on correlation-criteria-based feature selection. Because we
remove redundant features in this way, we eliminate the
need to prescribe (a priori) a small number of ‘most-
representative’ features.

Next, we apply the EMML framework, specifically
Method 2 as described in [51, 52], to model (δn

q )d , n =
1, . . . , Nt , d ∈ D. Although this approach was presented
in [52], we describe it below while specializing it for the
upscaling application considered here.

2.5 Modeling of the upscaling errors

We use a high-dimensional regression technique (random
forest, which is described later) to correlate the QoI error
(δn

q (m))d to the features f n. Since the QoI error can exhibit

a wide range of values, we define a relative error (δ̊n
q (m))d ∈

R as

(δ̊n
q (m))d := (δn

q )d

(qn
f )d

, n = 1, . . . , Nt , d ∈ D. (18)

From hereon, we drop the subscript d for notational
simplicity. We then assume that

δ̊n
q = r̊q (f n) + εn, n = 1, . . . , Nt , (19)

where δ̊n
q = δ̊n

q (m), f n = f n(m) ∈ R
1×Nf corresponding

to a well in coarse block d, and r̊q : R1×Nf → R denotes
an unknown function. The noise εn, which we assume
to be a random variable with zero mean, represents the
information due to missing features, sampling variability
and unaccounted for nonlinear effects. While the noise εn

may depend on the features, i.e., εn = ε(f n), we neglect
this dependence in this study.

To estimate the regression model r̊q , we construct ˆ̊rq :
R

1×Nf → R, such that ˆ̊rq(f n) ≈ r̊q (f n). The error model
ˆ̊rq is constructed here using random forest. Refer to [52]
for a succinct description of random forest in the context of
error modeling, and to [5] for a more detailed development.
A brief description of random forest is given in the
Appendix. Use of a high-dimensional regression technique

allows the estimated error ˆ̊
δn
q ∈ R to be expressed as

ˆ̊
δn
q = ˆ̊rq(f n), n = 1, . . . , Nt . (20)

Table 1 Features (f n) used in
EMML No. Feature No. Feature

1.
(
S′

a

)i

d

(
S′

a

)i

d
2. (Sa)

i
d/(Sc)nd

3.

(
(v′

1p)d
(
f ′

a

)i

d

)




4.

(
(v′

1p)d
(
S′

a

)i

d

)




5.
(
f ′

a

)i

d

(
f ′

a

)i

d
6. (fa)

i
d/(f c)nd

7. (f c)nd (Sc)nd

(
(v′

1p)d
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From Eq. 18, it follows that

qn
f = qn

c

1 − δ̊n
q

, n = 1, . . . , Nt , (21)

which enables us to express the QoI error δn
q in terms of

relative error δ̊n
q as

δn
q = qn

c ×
(

δ̊n
q

1 − δ̊n
q

)

, n = 1, . . . , Nt . (22)

Using our estimate for the error δ̂n
q in Eq. 22, we arrive at

δ̂n
q = qn

c ×
⎛

⎝
ˆ̊
δn
q

1 − ˆ̊
δn
q

⎞

⎠ , n = 1, . . . , Nt . (23)

In this modeling approach, we implicitly assume that the
samples (each corresponding to a time step) are independent
and identically distributed (i.i.d.). This enables us to frame
the construction of ˆ̊rq as a prediction problem rather than as
a time-series problem. This framing is appropriate because,
in our assessments, we perform coarse-scale simulation for
different models m, but over the same time interval.

2.6 Realization selection for EMML training dataset

To construct the mapping ˆ̊rq, q = o,w, inj , we first collect
the EMML training dataset. The construction of the EMML
training dataset involves simulating both the HFM and the
CSM for a fraction of the realizations in the ensemble. In
the context of uncertainty quantification, if the ensemble
contains Nreal different geological realizations, we define
the EMML training set as Ttrain := {m1,m2, . . . ,mNtrain},
where Ntrain denotes the number of realizations in the
EMML training dataset (Ntrain < Nreal). The remaining
Nreal − Ntrain realizations in the ensemble comprise the
EMML test dataset Ttest := {m1

test,m
2
test, . . . ,m

Nreal−Ntrain
test }.

Therefore, the ensemble can be described as Ttrain ∪ Ttest.
The EMML training dataset inform the relationship between
the response δn

q and the features described in Table 1.
To select the Ntrain realizations that constitute Ttrain from

the full ensemble of Nreal realizations, we cluster the Nreal

realizations, based on the well-pair volumes (WPVs) and the
well-allocation factors (WAFs), into Ntrain clusters. We then
choose the realizations that are closest to the cluster centers.
To compute the WPV and WAF for a realization, we solve
the stationary time-of-flight (TOF) and the stationary tracer
equation at the fine scale using MRST [28, 32]. See [37,
46] for more details. The WPV represents the pore volume
associated with an injector–producer pair, and the WAF
indicates the fraction of the flux at a production well that
can be attributed to a given injection well. As shown by [37,
48], the TOF and the tracer information provide a dynamic
measure of heterogeneity, and can thus be used to cluster the

realizations. We note that clustering can also be performed
based on other measures, as discussed in [44, 47, 50], or by
ranking the realizations [19, 27, 36, 43] based on particular
metrics and then selecting representative realizations.

2.7 Feature-space partitioning and error prediction

As an alternative to constructing one global regression
model r̊q for a given well over the entire time frame of
the EMML training dataset, we instead partition the EMML
training dataset into categories or groups. These categories
are designed to capture the different stages that typically
exist in water-flooding problems. We then construct a
“local” error model for each category, with the intent of
improving prediction accuracy. As described in [52], we
can use classification or clustering to perform feature-space
partitioning. In this work, we focus on classification as it
was shown to perform well in [52].

Classification, a supervised machine learning technique
[22], involves the construction of a statistical model that
identifies the relationship between category membership
L ∈ R and categorization criteria, referred as classification
features. The statistical model is constructed based on
the samples for which the category membership and
the classification features are known. Following [52], we
perform feature-space partitioning only for production wells
dp ∈ DP , since injection-well behavior does not display
clear stages. For the production wells, we construct unique
local models (in each partition) for each QoI, i.e., oil and
water production rates.

The first step in classification is to define the category
L for all samples in the EMML training dataset. These
categories are defined based on HFM and CSM water
breakthrough and water cut (fraction of water in the
produced fluid) characteristics. The specific categorization,
with reference to Fig. 2, is as follows. Samples for which
water breakthrough has not occurred in either the CSM or

Fig. 2 Category assignment for a production well for the EMML
training dataset
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the HFM, i.e., Sc
d ≤ εB and SHFM

d ≤ εB , are assigned
to category A. Samples around water breakthrough, i.e.,
εB < Sc

d ≤ εC , are assigned to category B+ (if Sc
d < SHFM

d )
or B− (if Sc

d ≥ SHFM
d ). Samples beyond the breakthrough

transition, i.e., εC < Sc
d ≤ εD , are assigned to category

C+ (if Sc
d < SHFM

d ) or C− (if Sc
d ≥ SHFM

d ). Finally,
later-time samples with Sc

d > εD are assigned to category
D. For each production well dp, we therefore have L =
A, B+, B−, C+, C− or D. In this study, we set εB =
0.01, εC = 0.25 and εD = 0.5.

Here, we take the classification features to be the same as
the regression features, f n, n = 1, . . . , Nt , defined above.
Given the category membership Ln and the features for
all samples in the EMML training dataset, we use random
forest to construct the statistical model for the classification.
For a sample in Ttrain, we have available the features
described in Table 1, the true error δn

q , q = o,w, inj , in the
CSM prediction for the QoI, and the category assignment L

(A, B+, B−, C+, C− or D). For a well located in grid block
d, this information is represented as

F=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(f 1)1

(f 2)1

...
(f Nt )1

(f 1)2

(f 2)2

...
(f Nt )2

...
(f Nt )Ntrain

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, δ
¯q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

(
δ1
q

)1

(
δ2
q

)1

...
(
δ
Nt
q

)1

(
δ1
q

)2

(
δ2
q

)2

...
(
δ
Nt
q

)2

...
(
δ
Nt
q

)Ntrain

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,L=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(L1)1

(L2)1

...
(LNt )1

(L1)2

(L2)2

...
(LNt )2

...
(LNt )Ntrain

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

where q = o,w, inj , F ∈ R
NtrainNt×Nf , δ

¯q ∈ R
NtrainNt×1,

L ∈ Z
+NtrainNt ×1

, and the superscript on the parenthesis
is a counter for the fine-scale simulation in Ttrain. For the
test realizations mtest ∈ Ttest, we only have information for
features f n.

Finally, we note that for samples in categories B− and
C−, relative error (δ̊n

q )d can potentially be large. This
is because, in the absence of water breakthrough in the
fine-scale simulation, the denominator (qn

f )d in the defini-
tion of relative error in Eq. 18 can be very small. Therefore,
for scaling purposes, for all samples in categories B− and

C−, we redefine the relative error so it is in terms of (qn
c )d

rather than (qn
f )d . This gives

(δ̊n
q (m))d := (δn

q )d

(qn
c )d

, n = 1, . . . , Nt , d ∈ D. (24)

Following the development in Section 2.5, we now arrive at

δ̂n
q = qn

c × ˆ̊
δn
q , n = 1, . . . , Nt . (25)

3 Numerical results

In this section, we present numerical results demonstrating
the quality of the estimated error (δ̂n

q )d obtained using the
EMML framework. We perform numerical experiments on
two sets of synthetic models. The first set corresponds to a
bimodal channelized system. The HFMs contain 100 × 100
grid blocks, and these are upscaled to 10 × 10 CSMs. The
second set of models involves three-dimensional Gaussian
permeability fields defined on grids containing 50 × 50 ×
20 blocks. The corresponding upscaled models are of
dimensions 10×10×2. In both cases, the permeability field
on the fine scale is isotropic, and the porosity is constant and
set to 0.2. Similarly, in both cases, the relative permeability
curves are given by krw(S) = S2 and kro(S) = (1 − S)2, on
both the fine and coarse scales. The fluids in both cases are
slightly compressible. The oil and water viscosities are 3 cp
and 1 cp, and the oil and water densities are 641 kg/m3 and
997 kg/m3. Capillary pressure effects are neglected. MRST
[28, 32] is used for both the CSM and the HFM simulations.

3.1 Error modeling for 2D channelizedmodels

The two-dimensional bimodal channelized system contains
four production wells (P1–P4) and one injection well (I1)
arranged in a five-spot pattern. The fine-grid cells are of
dimensions 32 ft × 32 ft × 30 ft, while the coarse-grid cells
are of dimensions 320 ft × 320 ft × 30 ft. The initial
reservoir pressure is 4700 psi and the initial water saturation
is 0.001. Geological uncertainty is treated by considering
an ensemble of 250 unconditioned realizations. Figure 3
shows six realizations from the ensemble: three of these
belong to Ttrain, while the other three belong to Ttest.
These realizations were generated using SNESIM [49], with
a channelized training image and Gaussian permeability
distributions in each facies introduced using the cookie-
cutter approach. For more details on the models, refer to
[54]. The wells in all of the simulations are BHP controlled,
with the BHPs for all of the production wells set to 2200 psi,
and the BHP for the injection well set to 9800 psi. As BHPs
are prescribed in this case, the QoI are the injection and
production rates.
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Fig. 3 Realizations of the permeability field (log k) from the ensemble of two-dimensional bimodal channelized models. Well locations are also shown

3.1.1 Upscaling error in channelized model

We first illustrate the performance of the SPTU upscaling
method for single-phase flow for a particular realization.
The log transmissibility in the y-direction for the HFM and
the CSM, corresponding to Test Case 4, are shown in Fig. 4.
Well-by-well flow rates for the CSM and HFM are shown in
Fig. 5. There we see that, despite the fact that the channels
are not evident in the CSM (Fig. 4b) due to the high degree
of coarsening, the upscaling procedure nonetheless provides
accurate production and injection rates for all wells. A high
degree of accuracy in these quantities is typically observed
using this global upscaling method.

Highly coarsened models such as that shown in Fig. 4b
are usually less accurate in terms of breakthrough and fluid
distributions in two-phase flow problems. This is evident
in Fig. 6, where we plot fieldwide oil cut for the water-
flood problem of interest, for various coarsening levels. We
observe that the error in the two-phase flow results increases
with increasing coarsening, as expected, with the 10 × 10
CSM solution (blue curve) showing significant error relative
to the HFM solution (black curve). The increase in error
with degree of coarsening is accompanied, however, by a
corresponding decrease in computational effort, so there is
a clear tradeoff between accuracy and cost. Our intent in
applying the EMML methodology is to correct the error
associated with the 10 × 10 CSM solution while retaining
much of the efficiency inherent in coarse-scale simulation.

In our evaluations of the EMML framework, we choose
the level of upscaling such that the CSM provides
significant speedup, but at the same time retains enough

resolution to capture the basic flow response. This balance
is achieved through application of SPTU and by retaining a

Fig. 4 Log transmissibility (with T in units of m3) in the y-direction corre-
sponding to Test Case 4 (two-dimensional bimodal channelized system)
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Fig. 5 Upscaling results for single-phase flow for Test Case 4 (two-
dimensional bimodal channelized system)

reasonable number of grid blocks, for example five, between
injector–producer pairs in the CSM. It may be possible to
use even coarser models, but then the error model would
have to be capable of accurately capturing large effects,
which may require extension of the methodology.

To construct the error model ˆ̊rq , we first generate the
EMML training dataset, which involves performing 30
fine-scale and corresponding coarse-scale simulations (i.e.,
Ntrain = 30). To reduce the elapsed (wall-clock) time,
these simulations are performed in parallel, using 12 cores.
Here Ttrain contains 30 realizations, while Ttest contains
220 realizations (the full ensemble contains a total of
250 unconditioned realizations). The error model, ˆ̊rq , is
constructed by performing classification on the EMML
training dataset followed by regression. To estimate (δn

q )d
for a test sample, we first predict the category Ln, and we
then compute the QoI error δ̂n

q accordingly.
Misclassification error, defined as the ratio of the number

of EMML test samples misclassified to the total number of
EMML test samples over all realizations in Ttest, may be
incurred when predicting the category L. The percentage
of misclassified EMML test samples is about 17% for this
case. For the two-dimensional model considered here, the
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Fig. 6 Fieldwide oil cut with varying coarsening levels for Test Case 4
(two-dimensional bimodal channelized model)

total number of features per sample (Nf ), after removing
the highly correlated features, is on average about 110 for
production wells and 30 for the injection well. Note that
each QoI may retain a different subset of features. Finally,
we reiterate that none of the test cases is used in the
construction of the EMML training dataset.

3.1.2 QoI error modeling for 2Dmodel: Test Case 1

We first present results for Test Case 1, represented by
m1

test ∈ Ttest and shown in Fig. 3d. Figure 7 displays
the results for the production and injection rates for wells
P1 and I1, and Fig. 8 shows the fieldwide oil cut and
cumulative fieldwide production profiles. We present results
for well P1 in Fig. 7a, b since it has the highest cumulative
liquid production. In all figures, the black curves denote
the fine-scale solution, the blue curves indicate the coarse-
scale solution (10 × 10 model), and the red curves show
the corrected solution. The error in the CSM relative to
the HFM is clearly evident in Figs. 7 and 8. The high

0 10 20 30 40 50
0

200

400

600

800

Time [years]

O
il 

pr
od

. r
at

e 
[b

bl
/d

]

 

 

HFM (100x100)
CSM (10x10)
CSM (10x10) + EMML−based correction

0 10 20 30 40 50
0

500

1000

1500

Time [years]

W
at

er
 p

ro
d.

 r
at

e 
[b

bl
/d

]

 

 

HFM (100x100)
CSM (10x10)
CSM (10x10) + EMML−based correction

0 10 20 30 40 50
800

1000

1200

1400

1600

1800

2000

Time [years]

W
at

er
 in

j. 
ra

te
 [b

bl
/d

]

 

 

HFM (100x100)
CSM (10x10)
CSM (10x10) + EMML−based correction

Fig. 7 EMML for QoI correction: Test Case 1. Production (P1) and
injection (I1) rates for various models for two-dimensional bimodal
channelized system, Ntrain = 30



Comput Geosci (2018) 22:1093–1113 1103

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time [years]

F
ie

ld
w

id
e 

oi
l c

ut

HFM (100x100)
CSM (10x10)
CSM (10x10) + EMML−based correction

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

6

Time [years]

C
um

ul
at

iv
e 

fie
ld

w
id

e 
oi

l p
ro

d.
 [b

bl
]

HFM (100x100)
CSM (10x10)
CSM (10x10) + EMML−based correction

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

7

Time [years]

C
um

ul
at

iv
e 

fie
ld

w
id

e 
w

at
er

 p
ro

d.
 [b

bl
]

HFM (100x100)
CSM (10x10)
CSM (10x10) + EMML−based correction

Fig. 8 EMML for QoI correction: Test Case 1. Fieldwide oil cut and
cumulative production profiles for various models for two-dimensional
bimodal channelized system, Ntrain = 30

degree of upscaling leads to a loss of resolution of the
channels, which in turn results in late water breakthrough in
the CSM. We observe, however, that the corrected solution
provides significantly improved accuracy in all quantities,
including breakthrough time (as is evident in Figs. 7b
and 8a).

Note, however, that the corrected solutions for production
and injection rates are not always smooth. This is because,

when computing ˆ̊
δn
q , we treat each time step as a distinct

(independent) estimate due to the i.i.d. assumption. By
contrast, results for the corrected cumulative production and
injection, which entail time integration, are smooth, as is
evident in Fig. 8b, c. It would of course be straightforward to
apply a simple smoothing operation to the corrected results,
which would act to reduce the fluctuations. It may also be
possible to build more “memory” into the features, which
could act to limit fluctuations in the EMML estimates.

3.1.3 QoI error modeling for additional models

We now present representative results for Test Cases 2–4.
Time-integrated errors for the realizations in the set Ttest

will then be computed. Test Case 2 corresponds to a lower
time-integrated error than Test Case 1, while Test Cases
3 and 4 correspond to similar or higher time-integrated
errors than Test Case 1. Results for fieldwide oil cut for the
three cases are shown in Figs. 9, 10, and 11. The corrected
solutions display a high degree of accuracy relative to the
HFM solutions for all cases (though fluctuations are again
evident). Additional results for Test Cases 2–4 are presented
in [51]. These results are generally comparable to those
shown earlier for Test Case 1.

We now evaluate EMML performance for all 250
realizations. To enable this assessment, we define the
following time-integrated error measures:

ECSM
o,w =

npw∑

dp=1

Nt∑

n=1

∣∣∣
(
δn
o,w

)
dp

∣∣∣�tn

npw∑

dp=1

Nt∑

n=1

(
qn
o,w

)HFM
dp

�tn

, (26a)

Ecorr
o,w =

npw∑

dp=1

Nt∑

n=1

∣∣∣∣
(
δ̂n
o,w

)

dp

− (
δn
o,w

)
dp

∣∣∣∣�tn

npw∑

dp=1

Nt∑

n=1

(
qn
o,w

)HFM
dp

�tn

, (26b)

ECSM
inj =

niw∑

di=1

Nt∑

n=1

∣∣∣∣
(
δn
inj

)

di

∣∣∣∣�tn

niw∑

di=1

Nt∑

n=1

(
qn
inj

)HFM

di

�tn

, (26c)

Ecorr
inj =

niw∑

di=1

Nt∑

n=1

∣∣∣∣
(
δ̂n
inj

)

di

−
(
δn
inj

)

di

∣∣∣∣�tn

niw∑

di=1

Nt∑
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(
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inj
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di
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, (26d)
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Fig. 9 EMML for QoI correction: Test Case 2. Fieldwide oil cut
for various models for two-dimensional bimodal channelized system,
Ntrain = 30
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Fig. 10 EMML for QoI correction: Test Case 3. Fieldwide oil cut
for various models for two-dimensional bimodal channelized system,
Ntrain = 30

where ECSM
o,w,inj denotes the time-integrated error in the

upscaled solutions, Ecorr
o,w,inj is the corresponding time-

integrated error in the corrected solutions, o designates the
oil production rate, w is water production rate and inj is
the water injection rate,

(
qn
o,w

)HFM
dp

denotes the oil or water

production rate for well dp at time step n from the fine-scale

simulation,
(
qn
inj

)HFM

di

is the water injection rate for well di

at time step n from the fine-scale simulation, and npw and
niw are the number of production and injection wells.

The time-integrated errors (expressed as percentages)
for all 250 realizations are shown in Fig. 12. For each
realization in the full ensemble Ttrain ∪ Ttest, the time-
integrated error in the upscaled solution is denoted by
the blue points. The red points display the time-integrated
error in the corrected solution for the 220 realizations in
the EMML test dataset Ttest, and the green points show
the error in the corrected solution for the 30 realizations
in the EMML training set Ttrain. The 250 realizations are
sorted by increasing upscaling (CSM) error. Test Cases 1–4
(presented earlier) are identified in the figure. The median
errors (%) corresponding to the EMML test dataset results
in Fig. 12 are presented in Table 2.

From Fig. 12 and Table 2, we see that by correcting
the CSM solution with the EMML error estimate, using
Ntrain = 30, we reduce the three errors (Eo, Ew and Einj ) by
about 61% on average. Based on the phase flow rate results
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Fig. 11 EMML for QoI correction: Test Case 4. Fieldwide oil cut
for various models for two-dimensional bimodal channelized system,
Ntrain = 30

Fig. 12 Time-integrated percent error in production and injection
rates as defined by Eq. 26a–d (two-dimensional bimodal channelized
system), Ntrain = 30

presented earlier (Figs. 7 and 11), this level of reduction
in the time-integrated error may be less substantial than
expected. The likely reason for this is that the EMML-
based corrections reduce large errors, but they do not
entirely eliminate more persistent small to medium errors.
Similar behavior was observed in our previous study, where
EMML was applied to correct error from a reduced-order
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Table 2 EMML for QoI correction: Median value of the time-
integrated errors with different EMML parameters for CSM and
corrected solutions for cases in EMML test dataset (two-dimensional
bimodal channelized system)

Ei
o (%) Ei

w (%) Ei
inj (%)

i = CSM 17 12 6.4
i = corr, Ntrain = 30 6.6 4.5 2.6
i = corr, Ntrain = 10 7.0 7.9 2.8

model [52]. Note finally that the time-integrated errors in the
corrected solutions corresponding to the realizations in Ttrain

are very small but nonzero. This is because the error model
ˆ̊rq does not overfit the EMML training dataset.

Realization-by-realization comparisons, and the cumulative
distribution functions (CDFs) for the cumulative oil produced
over the entire simulation (T = 50 years), are presented
in Fig. 13. The CSM model predictions (blue points) are

Fig. 13 Cross plots and CDFs for total oil production for realizations
in Ttest (two-dimensional bimodal channelized system), Ntrain = 30

accompanied by a systematic bias in the total oil produced.
The corrected solutions (red points) display improved
accuracy in the realization-by-realization comparison, as
well as in the CDF of the total oil produced. There is still
some variance, however, evident from the scatter around the
45◦ line in Fig. 13a. Additional results for cumulative water
production and total water injection are provided in [51].
For these quantities, CSM results appear to be more accurate
than those in Fig. 13, though the corrected solutions still
show improved accuracy. Note finally that, if we were only
interested in predicting cumulative quantities over the entire
simulation, we could potentially use a linear regression to fit
the CSM and HFM results while correcting the bias. In this
study, however, we are computing the integrated response
directly from the corrected solution (i.e., we correct the
rates at each time step and then compute the cumulative
response).

We now assess the accuracy of the corrected solutions
in terms of P10, P50, and P90 profiles for cumulative
fieldwide oil and water production. These results, presented
in Fig. 14, are obtained by computing the 10th, 50th, and
90th percentile of the cumulative fieldwide profile at each
time step. The P50 profile is represented by the thick solid
curves and the P10–P90 intervals by the thinner curves.
The thin gray curves in Fig. 14a and b depict the fine-
scale solutions for all realizations in the ensemble. The
bias in the CSM solutions (also observed in Fig. 13)
is evident in the overprediction of the P50 curve and
the P10–P90 interval for the cumulative oil produced in
Fig. 14c, and in the underprediction for the cumulative water
produced in Fig. 14d. The corrected solutions demonstrate
a high degree of accuracy, for the P10, P50, and P90
curves, in the cumulative fieldwide oil and water profiles
shown in Fig. 14e, f. This is an important observation as
it demonstrates that the EMML methodology is able to
provide accurate results over a wide range of responses (i.e.,
not just for the P50 profiles), which is essential for UQ.

Because the error modeling procedure requires the offline
simulation of 30 HFMs, it is important to demonstrate that
the P10, P50, P90 results obtained from our procedure
are more accurate than those computed directly from the
30 high-fidelity simulations used to construct the EMML
training dataset. The P10, P50, and P90 results for these
models, for cumulative fieldwide oil and water production,
are shown in Fig. 15. It is clear that the EMML-generated
results in Fig. 14e and f display higher overall accuracy
than the results in Fig. 15. This is particularly evident for
the P90 cumulative fieldwide water production result. It is
possible that alternate selection/modeling procedures, such
as those in [4, 44, 47], could perform better though this
would have to be tested. In any event, the accuracy of the
EMML-based P10, P50 and P90 results demonstrates the
overall robustness of our framework.
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Fig. 14 Statistical results for cumulative fieldwide oil (left) and water
(right) production profiles for two-dimensional bimodal channelized
system. In (a) and (b), the thin gray curves depict fine-scale solutions
for individual realizations. In (a)–(f), P50 results shown as thick curves

and P10–P90 interval as intermediate-weight curves. HFM solutions
shown in black, CSM solutions in blue, and EMML-corrected solu-
tions in red

We expect EMML performance to degrade if fewer
HFMs are simulated in the training step. To quantify this
decrease in accuracy, we constructed an error model ˆ̊rq
using Ntrain = 10 (instead of Ntrain = 30 as presented
above) HFM simulations. Detailed results are provided in
[51], and median time-integrated errors are presented in
Table 2. These errors are slightly higher than those for
Ntrain = 30, though clear improvement in accuracy relative

to the CSM results is still achieved. It is possible that the
Ntrain = 10 results could be improved through use of an
alternate training-realization-selection strategy.

3.1.4 Computational costs for 2Dmodels

The timings for simulating the HFMs, the CSMs, and the
offline (overhead) cost for constructing the error model are

Fig. 15 Comparison of P50 (thick curves) and P10–P90 interval (thinner curves) for cumulative fieldwide oil and water profiles between the HFM
(black curves) and the EMML training simulations (green curves) for two-dimensional bimodal channelized system, Ntrain = 30
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Table 3 Computational cost to
simulate a HFM, CSM and to
construct error model ˆ̊rq for 2D
models

Description Time (seconds)

Average time to simulate a 100 × 100 HFM 601

Average time to simulate a 10 × 10 CSM 22

Average time to solve Eq. 17 to generate features, for one model 9

(required for realizations in both Ttrain and Ttest)

Average time to construct the classification model for each production well 804

Average time to construct ˆ̊rq , q = o,w for each production well 776

Average time to construct ˆ̊rq , q = inj for injection well 554

Time to simulate all realizations (on fine and coarse scales) in EMML training set Ttrain 1803

in a parallel environment using 10 cores

summarized in Table 3. These timings are for Ntrain = 30.
We use MRST [28, 32], which is a Matlab code, for all
fine and coarse-scale simulations. The combined cost of
simulating a CSM and solving Eq. 17 (needed to generate
features) provides a speedup of about 20 relative to HFM
simulation. More substantial speedups (of at least a factor of
Nc/N

∗
c ) would be expected for realistic examples run with

a commercial-type simulator.
The offline cost for the EMML framework involves

(1) the construction of the EMML training dataset Ttrain,
(2) the construction of the classification model for each
production well d ∈ DP , (3) the construction of ˆ̊rq, q =
o,w, for each production well d ∈ DP , and (4) the
construction of ˆ̊rq, q = inj , for the injection well d ∈ DI .
The average wall-clock time to construct the classification
model for a production well is 804 s, the average time to
construct ˆ̊rq (q = o,w) for a production well is 776 s,

and the average time to construct ˆ̊rq (q = inj ) for an
injection well is 554 s. Assuming serial processing, the total
offline cost corresponding to the construction of all of the
statistical models is 9978 s, which is comparable to the
cost of about 17 HFM simulations. We emphasize that the
offline cost, though significant, is only incurred once, and
these computations can be easily accelerated through use of
parallel computation.

The total serial time for simulating 250 HFMs is 41.7 h.
By contrast, the total serial time to execute the full EMML-
based procedure, including simulating the fine and coarse-
scale models in Ttrain (with Ntrain = 30), constructing
the statistical models for all wells, and simulating the
additional 220 models in Ttest, is 9.9 h. Thus the method
provides a relatively modest speedup of a factor of 4.2
for this case. Note however that these timings are for a
basic Matlab implementation—we expect the construction

Fig. 16 Realizations of the permeability field (log k) from the ensemble of three-dimensional Gaussian models. Well locations are also shown
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of the statistical models to be faster in an optimized code.
In addition, although the coarse model contains 1% of
the grid blocks of the fine model, it runs only 27 times
faster, which indicates that the coarse model timings are
strongly impacted by overhead. The cost of constructing
the error model is independent of the HFM physics, since
it depends only on the number of samples and the number
of features in the EMML training dataset. We therefore
expect considerably better speedup for larger and more
complex problems. Offline cost will, however, increase
with the number of wells, since an error model must be
constructed for each well. The online cost of computing δ̂n

q

is negligible—only about 0.0004 s in this example.

3.2 Error modeling for 3D Gaussianmodels

The three-dimensional Gaussian models, defined on a grid
of dimensions 50 × 50 × 20, contain four production wells
(P1–P4) and one injection well (I1). The wells are fully
penetrating and are arranged in a five-spot pattern. The
upscaled models correspond to a grid of dimensions 10 ×
10 × 2. The fine-grid cells are 50 ft × 50 ft × 3 ft, while
the coarse-grid cells are 250 ft × 250 ft × 30 ft. The
initial reservoir pressure is 4200 psi, and the initial water
saturation is 0.001.

We consider an ensemble of 300 unconditioned realiza-
tions. Figure 16 shows six realizations from the ensemble:
three realizations belong to Ttrain, and three belong to Ttest.
These realizations are generated using sequential Gaussian
simulation [41], with the mean of log-permeability set to
3 and the standard deviation of log-permeability set to 1.5.
The dimensionless permeability correlation lengths (nor-
malized by the system length in the corresponding direction)
are 0.5 in the x- and y-direction and 0.05 in the z-direction.
All of the wells are BHP controlled, with the producer BHPs
set to 2700 psi and the injector BHP set to 7000 psi.

Gravitational effects are included in this example. Thus,
Darcy’s law is now as follows:

vj = −λjk · (∇p − ρjg∇D
)
, (27)

where D is depth, g is gravitational acceleration, and all
other variables are as previously defined. The computation
of the upscaled quantities (φ∗, T ∗ and WI ∗), the single-
phase velocity v1p, and the volume averaging procedure
(described in Section 2.3) are generalized to three dimen-
sions and to include gravity. For each coarse block the well
intersects, we compute the features described in Section 2.4,
and then concatenate them to construct the feature vector
f n, n = 1, . . . , Nt .

We next evaluate the quality of the EMML error
estimates for different realizations in the EMML test
dataset. As in the 2D case, the error model ˆ̊rq is constructed
by performing classification prior to regression. The EMML

training is accomplished by simulating Ntrain = 30 HFM
realizations. The misclassification percentage, based on all
of the samples in Ttest, is 8.5%.

3.2.1 Upscaling error modeling for 3Dmodels

Because the results for the 3D models are very consistent
with those for the 2D models considered in Section 3.1, our
presentation here is quite concise. For more extensive 3D
results (including results for individual wells) and additional
discussion, please refer to [51].

Fieldwide production and injection rates for Test Case
1 (log k field shown in Fig. 16d), are displayed in Fig. 17.
All curves are as previously defined. A noticeable error in
the CSM solution is evident in all three fieldwide quantities.
By correcting the CSM solution using the EMML-driven
error estimates δ̂n

q , n = 1, . . . Nt , d ∈ D, q = o,w, inj , we
achieve clear improvement in accuracy for each of the QoI.

Fieldwide oil cut results for Test Cases 2 and 3 (log k

fields shown in Fig. 16e, f) are presented in Figs. 18 and
19. Test Case 2 corresponds to smaller time-integrated

Fig. 17 EMML for QoI correction: Test Case 1. Fieldwide production
and injection rates for various models for three-dimensional Gaussian
system, Ntrain = 30
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Fig. 18 EMML for QoI correction: Test Case 2. Fieldwide oil cut for
various models for three-dimensional Gaussian system, Ntrain = 30

errors relative to Test Case 1, while Test Case 3 corresponds
to larger errors. The corrected oil cut results display
clear improvement over the CSM solutions, though some
discrepancy is still evident at early time in Fig. 19.

Figure 20 displays results for the time-integrated errors
(Ecorr

o , Ecorr
w , Ecorr

inj ) for the CSMs and corrected solutions.
All points are as previously defined, and Test Cases 1–3
are identified. The test cases are again sorted by increasing
upscaling error. We see that the corrected solutions
(red points) demonstrate significantly improved accuracy
relative to the CSM solutions (blue points). The time-
integrated errors in the corrected solutions corresponding
to the realizations in Ttrain (green points) are again small
but nonzero. The median errors for these results are as
follows: ECSM

o = 13.2%, Ecorr
o = 2.5%; ECSM

w = 6.3%,
Ecorr

w = 1.5%; and ECSM
inj = 3.7%, Ecorr

inj = 0.6%.
The corrected solutions are clearly quite accurate for this
three-dimensional system.

Realization-by-realization comparisons and CDFs for
total oil production, obtained using the HFMs, CSMs and
corrected solutions, are shown in Fig. 21. As was observed
earlier in Fig. 13, the bias exhibited by the CSM solutions
is largely eliminated through application of the error model,
though some variance (scatter) still exists. Note that the
overall variation between realizations is much less in this
case than in the two-dimensional bimodal channelized
system (as is evident from the scales in Figs. 21 and 13).
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Fig. 19 EMML for QoI correction: Test Case 3. Fieldwide oil cut for
various models for three-dimensional Gaussian system, Ntrain = 30

Fig. 20 Time-integrated percent error in production and injection
rates as defined by Eq. 26a–d (three-dimensional Gaussian system),
Ntrain = 30

3.2.2 Computational costs for 3Dmodels

Timings for this example are provided in Table 4. As before,
all simulations are run using MRST [28, 32]. For this
system, performing the coarse-scale simulation and solving
Eq. 17 corresponds to a speedup of about 50 relative to
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Fig. 21 Cross plots and CDFs for total oil production for realizations
in Ttest (three-dimensional Gaussian system), Ntrain = 30

a fine-scale simulation. Assuming serial processing, the
construction cost of the statistical models (described in
Section 3.1.4) is 157.5 minutes, which is about the same
as the time required for a fine-scale simulation. Elapsed
time could again be reduced through parallel processing.
The EMML offline cost, relative to the fine-scale simulation

cost, is much lower in this case (here this cost ratio is
about 1, while for the two-dimensional case it was about
17). This is due to the large computational effort needed
to simulate the fine-scale three-dimensional models in
Matlab. Note that the elapsed time required to construct ˆ̊rq
(q = o,w, inj ) for a well is similar to that for the two-
dimensional model. The online cost of computing δ̂n

q is
again only about 0.0004 s.

The total serial time required to simulate 250 HFMs
in this case is 625 h, while the serial time to execute
the full EMML-based procedure is about 90 h. Thus, the
method results in a speedup factor of about 7 for this
three-dimensional example. Again, these timings would
be modified by more efficient implementations, use of
commercial simulation software, and parallel processing.

4 Concluding remarks

In this work, we applied machine learning to estimate
upscaling error over multiple geological realizations in oil–
water flow simulations. Our treatments and results are
directly relevant to uncertainty quantification, where the
goal is to evaluate reservoir performance over an ensemble
of geomodels. The upscaled models considered here
were generated using global single-phase transmissibility
upscaling, which is (essentially) the most accurate such
technique available. Subgrid transport effects, however, are
not modeled in this procedure, and this leads to error
in coarse-scale simulations. Estimates for these subgrid
effects, generated by solving an approximate fine-scale
transport equation (with a constant-in-time velocity field),
were used to provide the features required by the machine
learning framework. The set of features also included global
properties such as well-pair volumes and well-allocation
factors. The error model was constructed by regressing the
true upscaling error in the two-phase simulation outputs
(known for all of the training samples) on the features.
This involves first constructing the EMML training dataset
Ttrain by simulating both the fine- and coarse-scale models
corresponding to some (representative) realizations in the

Table 4 Computational cost to
simulate the HFM and CSM
(using MRST) and to construct
ˆ̊rq for 3D models

Description Time (minutes)

Average time to simulate a 50 × 50 × 20 HFM 150
Average time to simulate a 10 × 10 × 2 CSM 0.85
Average time to solve Eq. 17 to generate features, for one model 2.1
(required for realizations in both Ttrain and Ttest)
Average time to construct the classification model for each production well 13.8
Average time to construct ˆ̊rq , q = o,w for each production well 9.7
Average time to construct ˆ̊rq , q = inj for injection well 24.7
Time to simulate all realizations (on fine and coarse scales) in EMML training set Ttrain 450
in a parallel environment using 10 cores (offline)
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ensemble. For the remaining realizations (i.e., the EMML
test dataset Ttest), the coarse-scale two-phase simulation
outputs were corrected using the error model. Classification
of the samples into categories was applied prior to
regression. Both the classification and regression models
were constructed using random forest.

We successfully applied the EMML framework to
two example cases involving two-dimensional channelized
models and three-dimensional Gaussian models. In both
cases, improved accuracy was achieved for each well for
the quantities of interest (phase injection and production
rates) over a large number of test cases. The corrected
solutions displayed a generally high level of accuracy
both on a realization-by-realization basis and in statistical
quantities such as CDFs and P10, P50, P90 predictions for
cumulative oil and water production. The overhead (offline)
cost associated with the EMML procedure is substantial,
as O(10 − 30) fine-scale simulations must be performed,
and regression models must then be constructed on a
well-by-well basis (classification models are also used for
production wells). High degrees of speedup are achieved
in the online computations, however, as all simulations
are then on the coarse scale and the cost of the error
computation is negligible.

Future work should be directed toward improving
the current EMML implementation and to extending the
methodology to other problems. In terms of algorithmic
enhancements, it will be useful to explore approaches
that introduce smoothness into the computation of δ̊n

q ,
which could lead to the elimination of the fluctuations
observed in rate quantities at some time steps. It will
also be of interest to evaluate the performance of other
realization-selection methods in the EMML training step,
as this may enable us to perform fewer fine-scale training
simulations. Other application areas include error modeling
in more complex upscaling problems, in history matching,
and in well placement and well control optimization. The
complex upscaling problems could include, for example,
error assessment in compositional upscaling [30, 31, 42]
or in upscaling discrete fracture models. Errors deriving
from the use of coarse-scale models in history matching, or
through the use of parameterized geological models (as in
[54]), should also be assessed.

The use of our EMML-based methodology could be
particularly useful in the context of well placement
optimization under uncertainty. In this problem, the goal
might be to maximize, e.g., the net present value of
the project averaged over a large number of geological
realizations. The use of error modeling in conjunction with
a multilevel optimization method, such as that presented
in [1], could greatly accelerate these computations. The
framework presented here would require some extension
for this application. In particular, the error model would

now need to account for the particular well configuration
under evaluation in the optimization. This would require
the inclusion of additional features, such as well-to-well
distance and near-well geology quantities, into the random
forest regression. The use of error modeling in combination
with well control optimization under uncertainty, where
time-varying well rates or BHPs are varied to maximize an
objective function, could also be considered. In this case,
well rate or BHP information would need to be incorporated
into the feature set, as was done in [52]. Finally, error
models for the joint optimization of well location and well
control, which could build on the findings for the two
individual problems, could also be devised.
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Appendix: Random-forest regression

Random forest is a decision-tree-based supervised statistical
technique used here to construct both the classification
and regression models from the EMML training dataset.
We provide a succinct description here – see [5] for more
details. A single decision tree can be used to recursively
segment the domain of the EMML training dataset in the
feature space, as shown in Fig. 22. Segmentation is achieved
by minimizing the following expression in a top-down
greedy approach:

∑

n,k:f n∈R1(j,s)

(δn − δ̂R1)
2 +

∑

n,k:f n∈R2(j,s)

(δn − δ̂R2)
2. (28)

Here, R1(j, s) = {f | fj < s} and R2(j, s) = {f | fj ≥ s}
denote the feature-space regions as shown in Fig. 22, where
j ∈ {1, . . . , Nf } is the feature index and s ∈ R is the cut-
point that segments the domain, and δ̂Rk

∈ R, k = 1, 2
denotes the mean value of the error for all of the training
samples in Rk . The recursive segmentation enables the
nonlinear interactions between the features to be captured.
Methods of this type are known as tree-based because the
recursive segmentation can be interpreted as a decision tree.

Single decision trees, however, tend to overfit the data.
As a result the classification or regression model may
suffer from low bias and high variance. To avoid this
problem, in the random forest procedure we construct an
ensemble of decision trees to improve prediction accuracy.
This is accomplished by first selecting a random subsample
of the EMML training dataset from the overall set. The
subsamples are drawn with replacement (bootstrapping)
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Fig. 22 Schematic of segmentation of the feature space using a
decision tree. Figure modified from [24]

such that the size of the new set is the same as that of the
original set. Then, when constructing each decision tree, at
any node of the tree, random forest selects a random subset
of features from all possible features, and then segments
the data based on this subset. This entails solving Eq. 28
using the subset of features. As a result of these treatments,
random forest leads to reduction in the variance without
a corresponding increase in the bias. The random forest
implementation used in this work is provided in [6].
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