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Abstract The conventional paradigm for predicting future
reservoir performance from existing production data
involves the construction of reservoir models that match the
historical data through iterative history matching. This is
generally an expensive and difficult task and often results
in models that do not accurately assess the uncertainty of
the forecast. We propose an alternative re-formulation of
the problem, in which the role of the reservoir model is
reconsidered. Instead of using the model to match the his-
torical production, and then forecasting, the model is used
in combination with Monte Carlo sampling to establish
a statistical relationship between the historical and fore-
cast variables. The estimated relationship is then used in
conjunction with the actual production data to produce a
statistical forecast. This allows quantifying posterior uncer-
tainty on the forecast variable without explicit inversion or
history matching. The main rationale behind this is that
the reservoir model is highly complex and even so, still
remains a simplified representation of the actual subsurface.
As statistical relationships can generally only be constructed
in low dimensions, compression and dimension reduction
of the reservoir models themselves would result in further
oversimplification. Conversely, production data and forecast
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variables are time series data, which are simpler and much
more applicable for dimension reduction techniques. We
present a dimension reduction approach based on func-
tional data analysis (FDA), and mixed principal component
analysis (mixed PCA), followed by canonical correlation
analysis (CCA) to maximize the linear correlation between
the forecast and production variables. Using these trans-
formed variables, it is then possible to apply linear Gaussian
regression and estimate the statistical relationship between
the forecast and historical variables. This relationship is
used in combination with the actual observed historical data
to estimate the posterior distribution of the forecast vari-
able. Sampling from this posterior and reconstructing the
corresponding forecast time series, allows assessing uncer-
tainty on the forecast. This workflow will be demonstrated
on a case based on a Libyan reservoir and compared with
traditional history matching.

Keywords Reservoir · Forecasting · Functional data
analysis · Uncertainty quantification

1 Introduction

Forecasting future reservoir performance from existing pro-
duction data requires the integration of many disciplines.
While a large variety of methods are available [13, 18],
the practical application of these methods remains lim-
ited and often practice resorts to manual adjustment [31].
In reality, considerable complexity presents itself. First,
reservoir models need to be constructed consisting of struc-
tural, lithological, and petrophysical components. These
components may be interrelated to some degree. Several
uncertainties exist, such as geological scenario uncertainty
(discrete uncertainty); uncertainty on spatial distribution of

�

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-017-9614-7&domain=pdf
mailto:jcaers@stanford.edu


316 Comput Geosci (2017) 21:315–333

lithologies, porosity, and permeability (spatial uncertainty);
and uncertainty in the structural framework in terms of
number of faults (categorical uncertainty), fault hierarchy
(scenario uncertainty), and fault throw (continuous param-
eter uncertainty). In addition, uncertainties may exist that
affect fluid behavior, such as relative permeability, PVT
properties or phase contacts, and initial and boundary con-
ditions. Whether using a sampling approach to address
the history-matching problem or an optimization approach,
some forms of iteration must be done, in order to perturb
all of these components to achieve multiple history-matched
models that will hopefully represent realistic uncertainty.
In this sense, sampling methods are preferred as they can
incorporate prior uncertainty and hence, generate posterior
solutions for uncertainty quantification, which are required
for decision-making purposes. The amount of parameters
involved however may become very large, including the
issue of dealing with spatial uncertainty. For the latter, sev-
eral dimension reduction techniques have been proposed
[14, 20].

To date, there is not one single method that can address
all these complexities. In other words, account properly for
prior model uncertainty on all components of the model
(fluid, rock, structure, petrophysics, and boundary) and
sample models based on a Bayesian formulation of the pos-
terior, matching all dynamic data, such as four-dimensional
(4D) seismic, well test, production data, etc. Most publi-
cations address part of the problem, either by focusing on
petrophysical properties only but not structure or by focus-
ing on a fixed spatial model while perturbing simple engi-
neering parameters. Generating usable and comprehensive
software also remains elusive.

In this paper, we make a first small step towards refor-
mulating and perhaps, rethinking and re-evaluating the
practice of history matching in terms of real field appli-
cations involving full complexity, going beyond the usual
simplified academic problems treated in many publications.
Our approach builds on the previously published prediction
focus analysis (PFA; see [11, 24, 25]). In this approach,
it is advocated to not generate multiple models that match

dynamic data, and then only run a forecast model on the
history-matched models. Instead, the role of reservoir mod-
els is reconsidered; rather, models are generated in order to
establish a direct statistical relationship between data vari-
ables and forecast/prediction variables, then using this esti-
mated relationship and the actual production data to produce
a statistical forecast. In this regard, we quantify posterior
uncertainty on the forecast without history matching indi-
vidual models. The rationale here is that reservoir modeling
is complex and that reservoir models are extremely high
dimensional and despite this, still remains a simplified rep-
resentation of the actual subsurface geological and fluid
complexity. Any sparse representation or dimension reduc-
tion method would further simplify an already simplified
reality. On the other hand, production data and forecast vari-
ables are simple time-series on which statistical dimension
reduction techniques as well multivariate modeling can be
readily applied, without much loss of information. In this
paper, we apply this idea on a real field case and show
that roughly the same forecast can be obtained as with the
traditional approach of generating multiple history-matched
models. The structure of the paper is as follows. First, we
review the prediction-focused analysis in broad terms as
well as provide specific details. Next, we present a bootstrap
method that allows evaluating the confidence in the method.
We then apply the method to two versions of the same real
field case, one involving structural uncertainty and one not.
We provide appropriate limitations and discussion in con-
cluding this paper and identify scenarios in which traditional
inversion is still required.

2 Prediction-focused analysis

2.1 General overview

In prediction-focused analysis, one considers not just data
variables and model variables but also the intended purpose
in terms of prediction variables. Figure 1 illustrates the dif-
ference in approach between traditional model building by

Fig. 1 Two views on addressing
the forecasting issue. The
traditional framework (left)
applies causal analysis to match
the models to the data, then use
those matched models for
forecasting. The proposed
methodology (right) uses
evidential analysis by which the
model is used to construct a
statistical relationship between
the data and forecast
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history matching and then forecasting and an approach that
includes the forecast in an integrated fashion. In general
terms, we represent time-varying historical data variables
(such as watercut, oil rate, pressure, etc.) as vector d. The
reservoir model is represented by m. The latter consists of
the spatial model, the structural model, the fluid model, and
all associated parameters, hence, is very high dimensional.
The (future) forecast (such as cumulative oil, water cut, and
volume) is represented by h. Clearly, the dimension of m is
much larger than that of h and d.

dim (m) � dim (h), dim (d) (1)

In addition, we observe actual field production data (or any
other data), which we term dobs.

The idea of a prediction focus analysis is straightforward:
using a stated prior on m, namely f (m), one generates, by
Monte Carlo (or other methods, such as quasi Monte Carlo),
a set of N prior models: {m1m2. . .mN }. These models are
then evaluated through the data forward model:

d = Gd(m) (2)

and the forecast forward model:

h = Gh(m) (3)

These are forward functions are deterministic functions that
generates the data and forecast variables for a given reser-
voir model m. These functions are determinsitric (assumed
exact); observation error will be treated later. In practice,
these functions are generally reservoir simulators that gen-
erate the expected historical and future production rates for
a given reservoir model. Applying them to each prior model
results in the pairs of data:
{
{d1, h1}, {d2, h2}, . . . , {dN , hN }

}
(4)

Next, a statistical dimension reduction method is employed
(e.g., MDS, PCA, kernel principal component analysis
(KPCA), functional principal component analysis (FPCA),
and canonical functional component analysis (CFCA), see
later) to generate reduced dimension vectors, d∗ and h∗or in
terms of the sample:

{{d∗
1, h

∗
1}, {d∗

2, h
∗
2}, . . . , {d∗

N , h∗
N }}

where dim (d∗) << dim (d); dim (h∗) << dim (h)

(5)

This joint sample is used to construct a multivariate distribu-
tion, assuming this is now possible because of the reduced
dimensions (see next section on the specifics): f

(
d∗, h∗).

The observed data is reduced in dimension using the same
dimension reduction method, obtaining d∗

obs . The reduced

observations are then used to condition the multivariate
distribution as f

(
d∗, h∗|d∗

obs

)
which can be used to obtain:

f
(
h∗|d∗

obs

) =
∫

d

f
(
h∗|d∗

obs

)
f
(
d∗) dd∗ (6)

After backtransformation, this results in the desired poste-
rior uncertainty on the forecast f (h|dobs). Note that the
only requirement for the dimension reduction technique is
for it to bijective namely having a uniqueness property:

if h∗ =rh (h);d∗ =rd (d) then h=r−1
h

(
h∗);d=r−1

d

(
d∗)

(7)

with rh and rd the multivariate functions representing
the respective mapping from higher to lower dimensions.
The bijectivity allows moving from one lower to higher
dimensional space and vice versa without encountering an
ill-posed inverse problem. For example, multidimensional
scaling and KPCA are not bijective as they require the solu-
tion of what is termed a pre-image problem (see [22]),
while PCA, NLPCA, and FPCA are bijective operations (see
Satija and Caers [24]).

2.2 Specifics

Figure 2 provides an overview of the specific components
that are presented in this section. Preferably, the multivari-
ate distribution in Eq. 6 should be multivariate Gaussian. In
such case, the conditional distribution can be obtained using
Gaussian process regression, equivalent to simple kriging
the forecast from the data [28]. A multivariate Gaussian can
be reasonably assumed when the relationship between d∗
and h∗is linear:

d∗ = G · h∗ (8)

and when the marginal distributions are Gaussian. Gaussian
marginal distributions can always be obtained by means of
histogram transformations, but obtaining a linear relation-
ship is more challenging. To that extent, Satija and Caers
[24] recognize that output of flow simulators represent sys-
tematic, physical “signals,” varying in time. For example,
cumulative curves obtained from multiple reservoir models
have similar functional behavior (they start at zero, break
through, and then increase) and they are not purely stochas-
tically varying time series. As a result, they propose to
reduce dimension of such signals by means of a statistical
dimension reduction method that capitalizes on such sys-
tematic behavior, namely FPCA. To that extent, consider the
basis expansion of the forecast variables as follows:

h (t) ∼=
L∑

i=1

kξ,iξ i (t) (9)
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Fig. 2 General overview of the proposed methodology. The workflow
uses Monte Carlo sampling and forward modeling to produce a set
of prior historical and forecast-response curves. FPCA and CCA are
used to reduce the dimension of the responses and maximize a linear
correlation between the two variables. Performing Gaussian process

regression and sampling from the resulting posterior distribution yields
a set of updated forecasts conditioned to the observed historical data.
Undoing the CCA/FPCA transformations produces the posterior fore-
casts as a set of time series responses from which updated quantiles
can be computed

Using a spline basis has the advantage of computational ease
of evaluation as well as establishing derivatives. The choice
of the number of basis is a modeling choice and will need to
be tuned for each case, usually using cross-validation [20].
We will use such spline basis throughout the paper. PCA on
the coefficients of this linear combination characterizes the
functional variations in the time series data and is referred
to as FCA:

h (t) ∼=
K∑
i=1

h f
i φ h,i (t) (10)

Hence, FPCA represents a time series as a lin-
ear combination of K orthonormal eigen-functions{
φ h,1 (t) , φh,2 (t) · · · φh,K (t)

}
with coefficients h f . Note

that FPCA, like PCA is bijective. A similar decomposition
can be achieved for the data variables:

d (t) ∼=
K∑
i=1

d f
i φd,i (t) (11)

Applying FPCA to the set of N prior samples one obtains:

{
{d f

1 , h f
1 }, {d f

2 , h f
2 }, . . . , {d f

N , h f
N }

}
(12)

Given the non-linear nature of the forecast and data response
model, Eqs. 2 and 3, it is not necessarily guaranteed that one
observes, after FPCA, a linear relationship between the pair-
wise components of d f and h f . This is usually attributed to
the presence of cross-correlations among the functional data
variables. Therefore, a linearizing operation is performed
by means of canonical correlation analysis (CCA), which
is a more general form of partial least squares [29]. CCA
relies on a linear transformation of both d f and h f such
that the components in such transformation are maximally
correlated, or in terms of notation:

dc = d f AT and hc = h f BT (13)

where A and B are obtained as solution of:

max
A,B

A�DH BT

√
A�DD AT

√
B�HH BT

(14)

with

D =

⎡
⎢⎢⎣

d f
1
...

d f
N

⎤
⎥⎥⎦

T

,H =

⎡
⎢⎢⎣

h f
1
...

h f
N

⎤
⎥⎥⎦

T

�DH = cov (D, H) ; �DD = cov (D, D) ; �HH = cov (H, H)

(15)
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Fig. 3 Situations where CFCA could yield an improper estimate of the posterior. A non-linear relationship between the data and forecast (left),
inconsistent prior (middle), and insufficient models that match the data in the prior (right)

thereby maximizing the correlations between pairwise
components of hci and dci while constraining all the
intercomponent correlations between hci and hcj �=i , between
dci and d

c
j �=i , and between h

c
i and d

c
j �=i to 0.

If a linear correlation is observed between dc and hc,
then a linear model G is regressed and a Gaussian likelihood
model formulated as follows:

L
(
hc

) = exp

(
−1

2

(
Ghc − dcobs

)T
C−1
dc

(
Ghc − dcobs

))
(16)

Cdc refers to the data covariance matrix of the canoni-
cal components, which is estimated from the data error
covariance in the original time domain using a Monte Carlo
approach proposed in [12]. Since prior and likelihood are

multivariate Gaussian, the posterior is also Gaussian and
the posterior mean and covariance can be readily estimated
using classical methods [28] as shown in Eqs. 17 and 18.

h̃ = h̄cprior+ChG
T
(
GCHG

T +Cdc +CT

)−1
(
dcobs−Gh̄cprior

)

(17)

C̃h = Ch − ChG
T

(
GChG

T + Cdc + CT

)−1
GCh (18)

CT is the covariance of the error that arises due to the linear
fitting in Eq. 8, which can be readily estimated empirically
from the residuals in Eq. 8. Once the posterior mean and
covariance is estimated, the posterior distribution is then
sampled and the obtained samples are backtransformed into

Fig. 4 Location of the
Hameimat Trough in the Sirte
Basin where the N-97 field is
located. Image source: [2]
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Table 1 Prior distribution of
uncertain reservoir parameters
used in generation of both
cases of scenario 1

Parameter OWC μoil TF1 TF1 TF1 TF1

Distribution U [1061, 1076] N (0.3, 0.2) U [0.2, 0.8] U [0.2, 0.8] U [0.2, 0.8] U [0.2, 0.8]

Parameter Krw Kro Swir Sor nw no
Distribution N (0.3, 0.2) N (0.7, 0.2) N (0.2, 0.2) N (0.2, 0.2) N (2.5, 0.2) N (2.0, 0.2)

The scoping set of 500 models were sampled from these distributions

actual signals, from which quantiles can be calculated (see
Fig. 2).

2.3 Assumptions

There exist a number of underlying assumptions for this
methodology to work in actual practice. These pertain to the
consistency of the prior, the effectiveness of the dimension
reduction, and the existence of a linear relationship between
data and forecast in the canonical space. We would like to
emphasize these before presenting application cases.

2.3.1 Dimension reduction

The “compression” by means of FPCA must be significant.
FPCA attempts to represent response variables from sim-
ulators by means of few principal components. The lower
the amount of components, the easier the Gaussian process
regression. This compression will become more difficult as
more wells are involved; hence, the procedure is likely to
apply at early development stages.

2.3.2 Consistency of the prior

The Bayesian formulation of the forecasting problem
requires the specification of a subjective belief on a hypoth-
esis (e.g., the reservoir model). Evidence is then gathered
(data) and then the probability of the evidence under the
hypothesis is evaluated (the likelihood). The importance of
this subjective prior is well known, and some authors in
the statistical world are working on methods of falsifica-
tion [9, 10]. If the “data” falls outside “the prior” as stated,
then the probability of the data under the prior hypothesis is
very small; consequently, the posterior is also very small for
the given hypothesis. It may be tempting to perform ad hoc
modifications to the prior (such as multiplying permeability
with some value around a well based on the production data)
with the purpose of ensuring that the prior range encom-
passes the observed data. However, this has been refuted as
“ad hoc” [5] and can lead to incorrect posteriors. Indeed,
any ad hoc modification of the prior will only lead to pos-
teriors to be again inconsistent with observation at a future
date. Accordingly, the prior distribution should be selected

Fig. 5 Structural model and
horizontal permeability used for
scenario 1. The location of the
existing producers are denoted
by P1 ... P5, while the location
of the new well to be drilled is
denoted by PNEW. The
uncertain reservoir parameters
and their prior distributions are
listed in Table 1
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Fig. 6 Production data until day 3500 for each of the five existing producers for each prior model (gray). The production profiles were generated
by forward simulating the prior models using a streamline simulator. The observed production is shown in red

to be wide enough and/or properly sampled to allow mean-
ingful statistical analysis (see Fig. 3). A number of scenarios
may still occur: (A) the data is not informative hence his-
tory matching is needed to predict h (the original intent of
PFA [25] is to detect this); (B) the data may not be covered
by the prior, which may be due to an inconsistent (e.g., too
narrow) prior or the number of samples (N ) from the prior
is insufficient; and (C) the data is covered by the prior but
an insignificant amount of samples is available to estimate
the posterior of h. The latter may occur when the data lies in
the extremes of the prior. These situations must be assessed
prior to performing PFA.

2.3.3 Linearity in canonical space

The relationship between the canonical components of d
and h can be modeled by means of a linear regression. Any
deviation of this linear model will lead to increased model
error, and hence, large wide uncertainty when this model
error is included in the forecasting (as in [24]).

Any violations of these assumptions may lead to no
reduction in posterior uncertainty or unreliable forecasts.
These issues therefore beg for a quantitative assessment of
the prediction power of the procedure, which is covered in
the next section. In instances where the predictive power
provided by PFA is low, traditional history matching will
still be required.

2.4 Confidence vs uncertainty

An uncertainty statement for a forecast, can be as simple
as stating a posterior PDF of that forecast. Since all reser-
voir modeling forecasts are obtained from limited amount
of samples from that PDF, a question of confidence on the
stated uncertainty is required. For example, if an uncertainty
interval based on quantiles is provided (often in terms of
P10–P90), then the confidence on those quantiles needs to
be calculated. First, this is relevant for testing whether the
posterior quantiles are different from the prior quantiles,

Fig. 7 The forecasted response for the new well from days 3500 to
7500, generated by forward modeling each of the prior models (gray).
The true (in reality unknown) forecast is shown in red
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Fig. 8 Reconstructions of the
original time series using only
the first four components of
FPCA along with the original
production data from producer 1
for select prior models. The
quality of the reconstruction
serves as a metric for selecting
appropriate basis splines

as this would indicate predictivity of the data towards that
particular forecast. Note that uncertainty and confidence
intervals need not be related. One may be very confident on
a wide uncertainty and less confident on a narrow uncertainty.
Since this depends on a number of factors (the prior uncertainty,
the particular data and forecast, the flow model, etc.), a
quantitative method is required to establish this relationship.

In this section, we develop a hypothesis test, which tests
whether the data informs the forecast (prediction variables
h) using the above (Fig. 2) procedure. Based on the p value
of this hypothesis test, we then plot confidence vs uncer-
tainty for several combinations of field data, to investigate
what combination of historical data should be used for that
forecast. It is clear that the most optimal situation occurs
when we have small posterior uncertainty in combination
with high confidence. A low confidence or large posterior
uncertainty suggests that conventional inversion techniques
may be required.

Fig. 9 Cumulative sum of the FPCA eigenvalues for the historical
responses of producer 1. This indicates that over 99 % of the variability
in P1’s responses can be captured by just the first 5 eigencomponents
of FPCA. This provides a metric for diagnosing the effectiveness of
the dimension reduction

In general, the data dobs is informative when there is a
significant difference between the prior distribution f (h)

and the posterior f (h|dobs). Since both these pdfs are mul-
tivariate and functional, it would be difficult to develop a
simple measure. As a proxy, we propose using the first
functional component h f

1 containing the maximum vari-
ability of H [16, 19, 21]. This would also be a necessary
condition for f (h) and f (h|dobs) to be different. The prob-
lem of comparing pdfs is now simpler as only a comparison
of univariate distributions is needed. We therefore define a
theoretical difference between prior and posterior functional
component as

δ = Δ
(
f
(
h f
1

)
, f

(
h f
1 |dobs

))
(19)

� can be any cdf- or pdf-based difference such as L1-
norm difference [7], the Kolmogorov-Smirnov difference
[15, 26], Jensen-Shannon or Kullback-Liebler divergence

[17]. The prior distribution is estimated as f̂
(
h f
1

)
directly

from the N scoping runs. The posterior cumulative distri-

bution is estimated as f̂
(
h f
1 |dobs

)
from the M posterior

samples obtained from the Gaussian process regression and
CCA backtransform. Thus, an empirical difference measure
is estimated as

δ̂ = Δ
(
f̂
(
h f
1

)
, f̂

(
h f
1 |dobs

))
(20)

Fenwick [7] proposed a bootstrap-based hypothesis test to
test for significant difference between two cdfs based on
the L1 norm. For the purpose of hypothesis testing, the

Table 2 Percentage of variance captured by the first 4 eigenvalues of
FPCA for each existing production well’s historical data

Well P1 P2 P3 P4 P5

Percentage of variance (%) 98.521 99.579 99.533 99.895 99.832

This suggests that the first 4 eigenvalues are sufficient to represent the
majority of the variation in the prior models’ historical response
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Fig. 10 Each of the prior models plotted in the reduced dimension
(functional components) of data vs forecast. The correlation between
the first components (left) shows a weak correlation between data
and forecast ρ = 0.2915. Likewise, the cross-correlation between the

first component of the data and the second component of the forecast
shows a similarly weak correlation ρ = −0.2577. Performing regres-
sion and estimation using these components could result in inaccurate
assessments of posterior forecast uncertainty

null hypothesis is that the prior and the posterior distribu-
tions of the first functional component are not different. For
bootstrapping, B datasets are drawn from the existing N
scoping runs without replacement, resulting in a B bootstrap
estimate of the difference

ˆ̂
δb = ΔCDF

( ˆ̂Fb
(
h f
1

)
,

ˆ̂Fb
(
h f
1 |dobs

))
, b=1, . . . ,B (21)

The number of times ˆ̂
δb ≤ δ̂ is measure by how strong

the predictivity is coinciding with the number of times the
null hypothesis is rejected. The more the null hypothesis is
rejected, the more confident we are on the informativeness
of the data, hence a good measure is:

ω = 1

B

B∑
b=1

i
( ˆ̂
δb ≤ δ̂

)
i = 1 if ˆ̂

δb ≤ δ̂, 0 else (22)

In the case study section, we illustrate the use of this
measure for various combinations of historical production
data.

3 Case study

3.1 Case description

The WintersHall Concession C97-I in the N-97 field is
located in the Western Hameimat Trough of the Sirte Basin
of north-central Libya (Fig. 4). The geological setting of the
Sirte Basin is described in detail by Ahlbrandt [2]. The pri-
mary hydrocarbon source bed in the Sirte Basin has been
identified by Ahlbrandt [2] as the Late Cretaceous Sirte
Shale. The reservoir under consideration, the WintersHall
Concession C97-I, is a fault-bounded horst block with the
Upper Sarir Formation sandstone reservoir [3]. Complex
interactions of the dextral slip movements within the rift
system have led to the compartmentalization of the reser-
voir. Initial structural modeling attempts and interpretation
from seismic data suggested the presence of up to four
faults, each with unknown displacements and transmissibil-
ity, due to uncertainty in the interpretation of the seismic

Fig. 11 The result of performing canonical correlation analysis on
the functional components of data and forecast to transform the mod-
els into canonical space (hc vs dc). The correlation between the first
canonical components is much stronger than its functional counterpart

(ρ = 0.8941). Furthermore, the cross-correlations between the first
data canonical component and the second forecast canonical compo-
nent is very low (ρ = 0.0297)
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Fig. 12 Drawing from the posterior distribution yields posterior sam-
ples in canonical space. Only the first two dimensions are shown here,
but each sample is actually a point in 4D space. The reduction in vari-
ance of the posterior samples in comparison with the prior models
indicates that a reduction in forecast uncertainty is achieved

image. Based on this realistic settings and the reservoir
model provided by the operator, we have generated a few
virtual cases by which we hope to illustrate the validity of
the direct forecasting approach.

3.2 Scenario 1: flow parameter uncertainty

In this first illustration, we consider the scenario where
the structural geology and depositional environment are
assumed to be well understood and the major sources of
uncertainty reside in the flow parameters. The reservoir is
thus composed of five distinct compartments resulting in
four uncertain fault transmissibilities. A large aquifer is
located in the lowest compartment, but the depth of this oil
water contact also remains uncertain. Other uncertain reser-
voir parameters are relative permeabilities for the oil and
water phases and oil viscosity. The relative permeabilites

of the oil and water are modeled using the Corey Expres-
sions [4], which requires three parameters for each phase
(irreducible saturation, end point permeability, and Corey
exponent). The prior distributions of these parameters are
listed in Table 1. The structural model contains four faults as
shown in Fig. 5 and is used for all realizations. Likewise, a
three-facies training image containing sand channels is used
with SNESIM [27] and Gaussian simulation to populate the
grid with the appropriate facies and reservoir parameters
(porosity/permeability) (see Fig. 5).

We consider the situation where five producers and three
injectors have already been drilled at the locations depicted
in Fig. 5. The field has been in production for 3500 days,
and production data is available for all five wells. A deci-
sion needs to be made regarding the economic feasibility
drilling of a 6th producer in the smallest reservoir compart-
ment (denoted PNEW) and an additional injector (denoted
INEW). Specifically, this decision will be made based on
the forecasted performance of this new well over the next
4000 days. Therefore, we will seek to estimate the P10–
P50–P90 forecasts of PNEW based on the first 10 years of
production data from the existing five producers.

3.2.1 Generating prior realizations of model, data,
and forecast variables

A prior set of models is required to establish a statistical
relationship between the data and forecast. In this case, a
set of 500 prior reservoir models is generated by apply-
ing Monte Carlo to the prior distributions in Table 1. The
number of models was selected to ensure that the prior dis-
tributions were sufficiently sampled. The prior models were
forward modelled using a streamline simulator (3DSL) over
all 7500 days to encompass both the 3500 days of produc-
tion data, as well as the 4000 days of forecast required to

Fig. 13 By undoing the CCA and FPCA, the posterior forecast sam-
ples are transformed from canonical space back into the time domain.
The posterior P10, P50, and P90 forecasts are shown along with
the prior P10, P50, and P90 curves (left). The sampled forecasts are

shown with the original forecasts from the prior models as well as
the reference (right). This illustrates that CFCA does indeed provide a
reduction in the forecast uncertainty
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Fig. 14 Prior and posterior P10,
P50, and P90 forecasts when the
measurement error CD is 100
(stb/day)2 (left) and 300
(stb/day)2. As the measurement
error is increased, the posterior
forecasts exhibits smaller
reduction in uncertainty
compared with the prior

make the decision regarding the new well. For illustration,
one of the generated models is used as a reference case, and
its production data used as the “observed” production data.
The prior distribution of reservoir performance for each of
the existing wells as well as the forecast for the new well is
shown in Figs. 6 and 7.

3.2.2 Dimension reduction

The first requirement in establishing a relationship between
the data and forecast is low dimensionality of both variables.
In this case, the data and forecast are time series responses,
that while technically are infinite dimensional, have been
discretized into vectors of lengths 150 and 170, respec-
tively. Directly establishing a statistical correlation between
variables of such dimension is still infeasible, and thus a
projection into a lower dimension using FPCA is first per-
formed. The critical step of FPCA is the selection of an
appropriate basis functions. In this particular instance, 6th-
order splines with 20 knots as basis functions are found to
provide reasonable approximations for both the data and
forecast variables. The effectiveness of the projection is
verified by performing FPCA, and then reconstructed the
original time series using the basis functions and harmonic
scores seen in Fig. 8.The choice of splines is then iteratively
adjusted to minimize the average RMS between the origi-
nal and reconstructed curves. It is also important to ensure
that oscillations caused by Runge’s phenomena [8] do not
occur over any of the models, when high-order splines are
used. The cumulative sum of the FPCA eigenvalues is used
to ascertain the effectiveness of this compression. From
Fig. 9, one observes that the compression is indeed signifi-
cant, as 98.52 % of the variability in Producer 1’s response

is captured by the first 4 eigenvalues. Table 2 shows the
percentage of the variability represented by the first 4 eigen-

values for each of the existing producers
(
d f
P1, d

f
P2. . .d

f
P5

)

in addition to the well to be drilled
(
hfPNEW

)
.

Since the production data is composed of multiple wells,
the relationship between each of the existing wells and
the new well must be quantified. However, redundancy
between the data from each production well exists, as they
are obtained from the same underlying reservoir model. For
instance, a shallow oil water contact in the aquifer would
cause both P3 and P4 to experience early water break-
through. Consequently, a second dimension reduction is
applied to the production data in the form of a mixed PCA
on the matrix d f

Producers obtained by concatenating (d f
P1,

d f
P2 . . .d

f
P5). In our example, 97.42 % of the variability of

the wells is captured by the first eight components of the
mixed PCA. This effectively reduces the 20-dimensional
d f
Producers into an 8-dimensional d f , thus each prior model

is represented by a single point in 12-dimensional space
(eight components from historical d f and four components
from the forecast h f ). This is illustrated in two dimensions
corresponding to the two largest eigenvalues in Fig. 10.

3.2.3 Canonical correlation of d f –hf and regression

Dimension reduction from an infinite dimensional time
series into a 12-dimensional space enables the possibility of
performing regression between data and forecast. However,
this is contingent on a sufficiently strong linear correlation
between the variables or else the resulting estimates from
regression will be inconclusive. In this example, the cor-
relation between first functional components of data and

Table 3 Difference between P10 and P90 averaged over the forecast period with varying levels of measurement error.

Prior σ 2∈ = 0 stb/day σ 2∈ = 50 stb/day σ 2∈ = 100 stb/day σ 2∈ = 300 stb/day

Average P10–P90 stb/day 565.102 271.23 283.71 344.65 527.95

As the measurement error is increased to extreme values, the posterior forecast returns to that of the prior
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Fig. 15 P10, P50, and P90
forecasts from direct forecasting
and rejection sampling. Two
error covariances were
illustrated: 50 (stb/day)2 (left)
and 150 (stb/day)2 (right). The
number of models remaining
after rejection was 690 and 987
in each case. A similar reduction
in uncertainty was achieved by
direct forecasting using
substantially less computational
effort

forecast is rather poor (ρ = 0.2915). This is due to the
presence of cross-correlations between the first and second
components (ρ = −0.2577) (Fig. 10). To fully capitalize
on the full multivariate correlation between all component
of h and all components of d, a CCA is performed to
transform the models into a canonical space (dc and hc).
This subsequently increases the correlation between the
first components from 0.2915 in the functional domain to
0.8941 in canonical space, similarly the cross-correlation
between the first and second components is reduced to
0.0297 (Fig. 11). Now that a linear correlation has been
established in low dimensions, the corresponding linear
relationship G is obtained via Eq. 8. The application of lin-
ear Gaussian regression (Eq. 16) to estimate the posterior
on the forecast components requires that hc must be trans-
formed using a normal score transform first to obtain hcGauss.
Gaussian regression thus produces a multivariate normal
posterior f (hcGauss|dobs) that is easily sampled to produce
forecast components conditioned to dcobs(Fig. 12). To obtain
the corresponding forecasts as time series, the normal
score transform and canonical transform must be backtrans-
formed. The resulting posterior samples now in functional
space, are used in conjunction with the original eigenfunc-
tions from FPCA to reconstruct h(t). One hundred posterior
forecasts were sampled and converted into time series as
shown in Fig. 13 along with the P10–P50–P90 curves
of the posterior forecasts. The posterior quantiles exhibit
a significant reduction in uncertainty in comparison with
the prior.

3.2.4 Accounting for measurement error

In the previous example, the observed data was assumed
to be error-free; however, this is often not the case in
real applications. This error is accounted for in the direct
forecasting workflow by the Cc

D term in Eqs. 17 and 18.

However, as the measurement error can only be estimated
in the original time domain (modeled as a zero mean Gaus-
sian with diagonal covariance matrix CD), the procedure
described in Section 2.2 and Hermans et al. [12] must be
applied to obtain Cc

D It is evident from Eq. 18, that increas-
ing magnitudes of measurement error will result in larger
posterior uncertainty That is to say, the less reliable the
observed data, the less informative it is of the forecast As
an illustration varying levels of measurement noise (100
and 300 (stb/day)2) were assumed, and posterior distribu-
tions for each were computed (Fig. 14; Table 3). This also
shows that increasing the measurement noise to extreme
values causes the posterior uncertainty to approaches the
prior uncertainty. This is in accordance with Eq. 18, as any
new information, regardless of how reliable, cannot increase
uncertainty.

Fig. 16 Posterior forecast quantiles for the situation where the new
well is to be after 7000 days instead of 3600 days. The inclusion of
additional informative data reduces the forecast uncertainty
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Fig. 17 Prior production data for P4 along with the true observed (left)
and the subsequent models in canonical space using only P4 as the data
(right). In this instance, the data does not inform the forecast due to the
compartment in which P4 is located having very little communication

with the compartment of the new well. This manifests as poor correla-
tion in the canonical space. This means the posterior will provide little
reduction in forecast uncertainty in comparison with the prior

Fig. 18 Prior production data for P5 along with the true observed (left)
and the subsequent models in canonical space using only P5 as the data
(right). Water breakthrough has yet to occur in P5 for most of the prior
models, and as a result, the majority of the models are producing at the

production limits. This means that for a given production profile in P5,
the forecasts for the new well could vary widely. This manifests in the
canonical plot as a vertical cluster of models around the observed data

Fig. 19 Due to the lack of
informativty between P4 (left)
and P5 (right), the posterior
uncertainty does not show
marked reduction from the prior
uncertainty
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Fig. 20 By using a combinatorial of historical data from a subset of
producers, and running the bootstrap test for statistical significance, we
obtain not only an updated forecast uncertainty but also a confidence
in this uncertainty. Each point represents some combination of wells,
its posterior forecast uncertainty (P10–P90 averaged over 4000 days of
forecast)

3.2.5 Comparison with rejection sampling

To compare the reduction in uncertainty provided by direct
forecasting with an idealized case, where multiple history-
matched models are available, 15,000 realizations were
sampled from the prior distribution and forward simulated.

Fig. 22 The forecasted response for the new well from days 3500 to
7500, generated by forward modeling each of the prior models (gray).
The true (in reality unknown) forecast is shown in red. An injector has
been added in the same compartment as this producer

Rejection sampling is performed on the resulting responses
to identify the realizations that match the production data
using the same methodology as described in Satija and

Fig. 21 Production data until day 3500 for each of the five existing producers for each prior model (gray). The production profiles were generated
by forward simulating the prior models using a streamline simulator and variable well schedules. The observed production is also shown (red)
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Fig. 23 Reconstructions of the
time original time series using
only the first five components of
FPCA along with the original
production data from producer 1
for select prior models. A larger
number of knots is required in
this scenario due to the
additional complexities in the
rate

Caers [24]. The likelihood is defined for the data observed in
each realization in the rejection sampling set using Eq. 23.

l (di |dobs) ∝ exp (di − dobs)T C−1
D (di − dobs) (23)

CD is a diagonal matrix, as the noise is modeled as a zero
mean Gaussian. Rejection sampling was performed for two
CD values, (σ 2 = 50 and 150 (stb/day)2) which resulted
in 690 and 987 models, respectively. The P10–P50–P90
curves for the corresponding forecasts of these matched
models were computed and shown in Fig. 15, along with
the computed P10–P50–P90 curves from direct forecasting.
In both instances, direct forecasting has comparable uncer-
tainty reduction with rejection sampling, while utilizing
only a fraction of the computational cost.

3.2.6 Updating forecasts with additional data

Assimilation of additional observed data remains a chal-
lenge in convention history-matching problems. Techniques
based on the Ensemble Kalman Filter [1], have been
proposed, but handling large systems with non-linearities
and non-Gaussian geostatistical priors remains a topic of
research. Due to the complexity of the reservoir models, the
history-matched models are often inconsistent with actual

future observations. This requires another round of costly
history matching and model updating in order to obtain an
updated forecast. Conversely, in PFA, the prior models just
need to be forward modeled for a longer simulation time to
account for the new data. Consider the case where the new
well is to be drilled after 7000 days rather than 3500. To
obtain an updated forecast, Direct Forecasting is repeated,
but with the original prior models forward simulated to
11,000 days (7000-day production and 4000-day forecast).
The resulting quantiles are shown in Fig. 16 and exhibit a
reduction in uncertainty compared with the previous 3500-
day case. This should be expected as the incorporation of
additional informative data should provide a reduction in the
forecast uncertainty.

3.2.7 Confidence vs uncertainty

To understand if data is informative on the forecast, consider
the scenario in which we only use a single production well’s
data to forecast the new well. In Fig. 17, only data from
producer 4 is used to make the forecast. As seen in Fig. 5,
producer 4 is separated from the compartment in which the
new well is located by two faults and potentially has a low
level of communication. Performing CFCA shows that only
a 0.0341 correlation exists between hc and dc, which is

Fig. 24 The posterior P10, P50,
and P90 forecasts are shown
along with the prior P10, P50,
and P90 curves (left). The
sampled forecasts are shown
with the original forecasts from
the prior models as well as the
reference (right). No
measurement error was assumed
here
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Fig. 25 Prior and posterior P10,
P50, and P90 forecasts when the
measurement error CD is
100 stb/day (left) and
300 stb/day

insufficient to reduce forecast uncertainty (Fig. 19). This
represents a case where the data is not related to the fore-
cast. Conversely, considering only producer 5 as the data,
and examining the production profiles from the prior mod-
els Fig. 18, one observes that most of the prior models have
not experienced water breakthrough after 3500 days. Con-
sequently, they are all producing oil at the production limits.
This manifests in the canonical domain as a cluster of mod-
els that yield widely different forecasts. It follows that the
quantiles obtained from CFCA using just P5, do not show
a marked decrease in uncertainty when compared with the
prior (Fig. 19).

To quantify the level of confidence on the updated
forecast quantiles, the bootstrap procedure outlined in
Section 2.3 is applied. To assess both the reduction in uncer-
tainty as well as the confidence we have in each updated
forecast, a combinatorial selection of wells was used to
update the forecast (e.g., P1, P1–P2, etc.). The bootstrap was
performed 500 times, and the average forecast uncertainty
(mean difference between P10 and P90 over the duration of
the forecast) is plotted against the computed ω of Eq. 22
(Fig. 20). This shows that in general lower confidence cor-
relates with larger posterior forecast uncertainty, and it can
be seen that using just P4 and P5 results in smaller uncer-
tainty reduction and poor confidence. Conversely, using
all five wells produces both higher confidence and lower
uncertainty. It should also be noted that some combina-
tions of wells such as (P1, P3, and P4) do produce reduced

uncertainty, but with low confidence, and this must be taken
into account when decisions are made.

3.3 Scenario 2: flow parameter uncertainty
with variable well schedules

To illustrate a scenario where the data exhibits discontinu-
ities and complexities commonly seen in real field cases,
both the injector and producer schedules from the previ-
ous case were modified to include shut-ins and pressure
changes (Fig. 21). Since the historical well schedule is
already known when constructing the prior models, it is
incorporated directly into the forward model (gd in Eq. 2).
An additional injector was also added to the same compart-
ment as the producer to be forecasted, to induce additional
variability in the forecasts (Fig. 22). Once again, 500 prior
models were sampled according to the prior parameter
distributions in Table 2.

3.3.1 Dimension reduction of discontinuous time series data

Due to the shut-ins and additional complexities in the histor-
ical production data, the 6th-order 20-knot B-splines used
as basis functions in the previous scenario are insufficient
to capture the variability among the prior models. However,
this is resolved by increasing the number of knots to 30,
as evident in the reconstructions shown in Fig. 23. Despite
this increase in number of knots, the FPCA and mixed PCA

Fig. 26 The two different
depositional scenarios depicted
by training images containing
channels (left) and ellipsoids
(right)
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procedures outlined in Section 2.2 are still able to identify
redundancies in the data. For each producer, FPCA identi-
fied that the first 5 eigenvalues were required to represent
99 % of the variability (in contrast to 4 in the previous sce-
nario), while the mixed PCA indicated that 12 total scores
(vs 8 previously), are required to represent the entire set of
historical production rates.

3.3.2 Posterior forecasts

Applying CCA on the scores obtained by FPCA/mixed
PCA resulted in correlations of 0.8821 in the first canoni-
cal components of the data and forecast. Consequently, the
reduction in uncertainty in the posterior forecasts (Fig. 24)
is comparable with that of the previous scenario. Likewise,
increasing the measurement error to 100 and 300 stb/day
causes the posterior uncertainty to revert towards the prior
uncertainty (Fig. 25). This demonstrates that if the compres-
sion provided by FPCA is significant, and CCA is success-
ful in maximizing linear correlations, direct forecasting is
able to provide reductions in uncertainty regardless of the
nature of the historical and forecast data variables.

3.4 Scenario 3: with structural and depositional
uncertainty

In the third scenario, both structural and spatial uncertainties
are considered. A combination of the structural uncer-
tainty modeling approaches suggested [6, 30] is applied. As

Fig. 27 Field-level production data until day 3000 for each prior
model (gray). The production profiles were generated by forward sim-
ulating the prior models using a streamline simulator. The observed
production is shown in red

Fig. 28 The forecasted response for the new well from days 3000 to
6000, generated by forward modeling each of the prior models (gray).
The true (in reality unknown) forecast is shown in red

described in Bellman et al. [3], there could be between one
and four faults in the reservoir at the given locations. There-
fore, the number of fault parameter (numFaults) is modeled
as an integer random number. The throws or displacements
of each fault (Throwi) is uncertain and must abide by rules
such as geologically older faults must have higher displace-
ments than newer faults. This indicates a joint distribution
between the Throwi and numFaults parameters:

Throwi+1 ≤ Throwi∀i ≤ numFaults

Throwi = 0∀i > numFaults

Fig. 29 Scatter plot of the first and second canonical components
of the data and forecast variables. The observed data projected into
canonical space is indicated by the red line. The correlation in this
instance is moderate (ρ = 0.65)
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Fig. 30 Comparison of posterior quartiles obtained from direct fore-
casting and rejection sampling with prior quartiles of the predicted
water cut in the prediction

where Throw1 is the displacement in the oldest fault. The
stochastic model-generation algorithm detailed in Satija
[23] is used to sample a value for each flow displacement
parameter under these constraints. To account for the spatial
uncertainty, two depositional scenarios are modeled using
two training images shown in Fig. 26. One TI contains sinu-
soidal channels, while the other contains ellipsoidal lobes.
Finally, two separate marginal distributions of net to gross
are considered (50 and 70 %) and used as an input to
SNESIM along with the TI to generate the resulting realiza-
tions. In the scenario, one producer and one injector have
already been in place and producing for 3000 days, a deci-
sion is required regarding drilling a new producer at a given
location in the highest fault block in the reservoir. Such a
decision would be based on the new well-forecasted per-
formance over the next 3000 days, such as if the operator
considers the well to be unprofitable if the water cut rises
above a certain threshold. To perform PFA, 500 models
are sampled from the prior and simulated using 3DSL. The
resulting responses are shown in Figs. 27 and 28. The same
workflow as the first scenario was applied, and resulting hc

vs dc plot is illustrated in Fig. 29. It should be noted that the
correlation in this example is not as linear as the previous
cases without structural uncertainty (0.61). As before, rejec-
tion sampling consisting of 4700 models, resulting in 221
history-matched models, was used and the posterior bounds
in both cases show similar results as in Fig. 30.

4 Discussions and conclusions

Forecasting problems in the oil and gas industry are gen-
erally formulated as iterative data inversion or history-

matching problems that are computationally expensive and
difficult. However, as the goal of forecasting is to inform
a decision, rather than obtaining the matched models, we
present a reformulation of the forecasting problem where
the role of the reservoir model is reconsidered. Instead of
attempting to use it to match the data, the model is instead
used to establish a statistical relationship between the his-
torical data and forecast. This estimated relationship is thus
used to obtain a statistical forecast based on actual observed
production data. To establish such a relationship, a strong
linear correlation is required in a low dimension to render
the statistical procedure feasible. In this paper, we use FPCA
followed by CCA to achieve these requirements. The appli-
cation of this methodology to three scenarios based on the
WintersHall Concession C97-I reservoir in Libyan demon-
strated that CFCA is able to provide updated estimates
of the forecast uncertainty that is comparable with rejec-
tion sampling, but at a fraction of the computational cost.
The confidence in these updated forecasts can be gauged
through a bootstrap test of statistical significance that we
have also presented in this paper. This level of confidence
in the updated uncertainty should be taken into considera-
tion when making decisions based off the forecast, as well
as identifying scenarios where traditional inversion (his-
tory matching) is still required. While PFA was presented
in this paper using time series as the responses, an exten-
sion of this research could be the application to other types
of responses common in the Earth Sciences such as satu-
ration maps or time-lapse data. The reduction in required
computational time and complexity of this methodology in
comparison with history matching could have considerable
impact on how forecasting is done in the Earth Sciences.
An additional appealing characteristic of this non-iterative
procedure is that (1) it can be perfectly parallelizes mak-
ing it extremely computationally efficient and (2) it can be
done “offline” outside of reservoir modeling and flow sim-
ulation software thereby making it completely general from
a software implementation point of view.
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