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Simulation of wave propagation along fluid-filled cracks using high-order
summation-by-parts operators and implicit-explicit time stepping *

OSSIAN OREILLY®T, ERIC M. DUNHAM'#, AND JAN NORDSTROM &

Abstract. We present an efficient, implicit-explicit numerical method for wave propagation in
solids containing fluid-filled cracks, motivated by applications in geophysical imaging of fractured
oil/gas reservoirs and aquifers, volcanology, and mechanical engineering. We couple the elastic wave
equation in the solid to an approximation of the linearized, compressible Navier-Stokes equations
in curved and possibly branching cracks. The approximate fluid model, similar to the widely used
lubrication model but accounting for fluid inertia and compressibility, exploits the narrowness of the
crack relative to wavelengths of interest. The governing equations are spatially discretized using
high-order summation-by-parts finite difference operators and the fluid-solid coupling conditions are
weakly enforced, leading to a provably stable scheme.

Stiffness of the semi-discrete equations can arise from the enforcement of coupling conditions,
fluid compressibility, and diffusion operators required to capture viscous boundary layers near the
crack walls. An implicit-explicit Runge-Kutta scheme is used for time stepping and the entire system
of equations can be advanced in time with high-order accuracy using the maximum stable time
step determined solely by the standard CFL restriction for wave propagation, irrespective of the
crack geometry and fluid viscosity. The fluid approximation leads to a sparse block structure for
the implicit system, such that the additional computational cost of the fluid is small relative to
the explicit elastic update. Convergence tests verify high-order accuracy; additional simulations
demonstrate applicability of the method to studies of wave propagation in and around branching
hydraulic fractures.

Key words. Fluid-filled crack, wave propagation, summation-by-parts, high-order accuracy,
implicit-explicit.

AMS subject classifications.

1. Introduction. There is considerable interest in wave propagation in solids
containing fluid-filled cracks. Hydrocarbon reservoirs, enhanced geothermal systems,
and groundwater aquifers all feature fractured rock masses saturated in fluid. Frac-
tures, or cracks, in these systems are either naturally occurring or created in hydraulic
fracturing treatments, and can be as narrow as ~0.1-10 mm but with lengths exceed-
ing ~100 m. Similarly high-aspect ratio cracks occur at a much larger scale in the
form of magma-filled cracks known as dikes and sills, a primary component of active
volcanic systems, and water-filled crevasses and basal hydraulic fractures in ice sheets
and glaciers. Seismic imaging of these systems provides key constraints on the crack
geometry and mechanical properties of the fluids and solids.

Simulation of wave propagation in and around fluid-filled cracks presents several
computational challenges. Many of these arise from the extreme narrowness of the
crack relative to wavelengths of interest; the dimensionless ratio of these two length
scales is typically ~10~2 or even less. Direct solution of the elastic wave equation in
the solid and linearized compressible Navier-Stokes equation in the fluid, using finite
difference, finite element, or discontinuous Galerkin methods, would involve either
distorted meshes or very fine grid spacings that might lead to overly restrictive sta-
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2 OSSIAN O’REILLY, ERIC M. DUNHAM, JAN NORDSTROM

bility constraints for explicit time stepping and/or poorly conditioned linear systems
for implicit time integration of viscous terms. Some studies have taken this direct
approach, most commonly by neglecting fluid viscosity and instead using the acoustic
wave equation for the fluid [32, 16, 47, 31]. Boundary element and boundary integral
methods [10, 39, 48] or even hybrid boundary element / finite difference methods [6]
overcome many of these issues, but are thus far restricted to inviscid fluids. Viscosity
was added recently in two-dimensional finite element models by Frehner and Schmal-
holz [14], who solved the full linearized Navier-Stokes equation for the fluid using an
unstructured mesh and a fully implicit Newmark time-stepping scheme. While a fully
implicit time-stepping scheme is feasible for two-dimensional problems of moderate
size, it likely becomes impractical or at least highly inefficient for three-dimensional
problems. Nevertheless, their work demonstrates the key role that viscosity plays in
damping waves.

Others have taken advantage of the narrowness of the crack by utilizing approxi-
mate fluid models. In these models, the crack, from the perspective of the solid, is an
infinitesimally thin interface. Along this interface, a lower-dimensional set of partial
differential equations (PDE) or even local relations between tractions and displace-
ment discontinuities are used to describe the fluid response. The local relations can
be as simple as traction-free interface conditions [31] though more widely adopted is
the linear slip model [9]. While local relations can be incorporated into explicit elastic
wave propagation codes [9, 47, 31] with relative ease, they fail to capture a fundamen-
tal type of guided wave that propagates along fluid-filled cracks. This wave, known as
a Krauklis wave [24, 13, 21], has generated considerable interest in volcanology [13]
and the oil and gas industry [21] because Krauklis wave resonance can be used to
deduce crack geometry and properties of the fluid within the crack [27, 26].

Studies focusing on Krauklis waves have therefore utilized PDE fluid models [8,
7], though viscosity is typically neglected or captured by the assumption of fully
developed (Poiseuille) flow. However, at the frequencies of interest, viscous dissipation
can neither be ignored nor properly described by Poiseuille flow, as it reaches its
maximum within boundary layers near the crack walls.

In this work, we present a numerical scheme that combines fully explicit time
stepping of the elastic wave equation and a PDE fluid model based on a lubrication-
type approximation to the linearized compressible Navier-Stokes equations. We use
high-order summation-by-parts (SBP) finite difference operators [25, 42, 35, 44] for
spatial discretization. The fluid-solid coupling conditions are weakly enforced us-
ing the simultaneous-approximation-term (SAT) penalty technique [5], and geometric
complexity is handled with curvilinear, multiblock grids.

We identify several sources of stiffness in the semi-discrete problem, arising from
compressibility and viscosity of the fluid. This stiffness is isolated by partitioning the
semi-discrete equations, and advancing the partitioned system in time with a high-
order implicit-explicit (IMEX) Runge-Kutta method [1, 4, 20, 36]. Similar partitioning
has been exploited in related fluid-structure interaction simulations [38, 12, 29, 17, 19,
46, 15]. A major advantage of our approximate fluid model, over the full linearized
Navier-Stokes equations, is that the linear system arising in the implicit component
of the time-stepping scheme has a sparse block diagonal structure. This substantially
enhances computational efficiency.

This paper is structured as follows. In Section 2 we describe the overall problem,
with focus in 2.1 and 2.2 on the solid and fluid equations. These are combined, in 2.3,
through the fluid-solid coupling conditions. These conditions are incorporated into a
variational formulation of the continuous problem with a weak enforcement of coupling
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WAVE PROPAGATION ALONG FLUID-FILLED CRACKS 3

conditions. We establish well-posedness by deriving an energy estimate. In Section
3 we present the semi-discrete approximation and establish stability by deriving a
discrete energy estimate. In Section 4 we present the fully discrete approximation
by discretizing in time using a high-order IMEX Runge-Kutta method. Section 5
demonstrates high-order convergence of the method using the method of manufactured
solutions, followed by two application problems illustrating wave propagation in and
around a branching fluid-filled crack. In Section 6 we provide a summary of the results
and perspectives on future work.

2. Continuous problem. In this section we introduce the governing equations
for the solid and fluid, along with conditions for coupling the solid and fluid across the
moving crack walls. We restrict attention to the two-dimensional problem, as shown
in Figure 1. The solid occupies the domain 2, and contains a crack, which is treated
from the perspective of the solid as an infinitesimally thin interface I' C ;. The
crack contains a compressible, viscous fluid defined on the domain ;. Rather than
solving the compressible Navier-Stokes equations in their most general form, we seek a
linearized description of the fluid, assuming small perturbations about a state of rest.
Furthermore, we utilize a lubrication-type approximation to take advantage of the
fact that the crack width is much smaller than wavelengths of interest; however, we
retain essential terms in the linearized Navier-Stokes equations that account for fluid
compressibility and inertia. Our model generalizes the model of [27] to account for
crack curvature and nonplanarity of the crack walls. Similar compressible lubrication
models are used in engineering, particularly for problems involving gas-filled bearings
and in studies of liquid droplet impact on surfaces [45, 41, 3, 18, 2].

2.1. Solid. Assuming linear elastic material response and small strains and ro-
tations, the solid is governed by the elastic wave equation:

ov Oo oo

(1) Ps g :Az%—FAya—y
do 1 0v 70V
where

1 00 0 01
A‘T{O 0 1}’Ay[0 1 O]’

v(@,y,t) = [vy vy]7T is the particle velocity, (2, y,t) = 044 Tyy 02y]7 is the stress, p,
is the density, and S = ST > 0 € R3*3 is the compliance matrix. Note that the 2 and
y subscripts denote the components of the solid velocity and stress and should not be
confused with partial derivatives. For an isotropic solid, as used in all simulations in
this work, the compliance matrix is

1—-v O —v
Sz; 0 2 0 ,
v 0 1—-v

where G > 0 is the shear modulus and —1 < v < 0.5 is Poisson’s ratio. However, the
numerical scheme developed below is applicable to anisotropic linear elastic solids as
well.

Curvature of the crack and possibly other geometric complexities in the shape
of the solid are handled by formulating the elastic wave equation in curvilinear co-
ordinates. We also utilize a particular splitting of the equations that facilitates the
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(a) Solid grids

B! =
J_BL/ fjl T W/\Li:/\u;g(s) )

(b) Fluid grid

Fic. 1. (a) Linear elastic solid Qs containing a fluid-filled crack, appearing from the perspective
of the solid as an infinitesimally thin interface I'. § and n denote unit vectors parallel and normal
to T', with n pointing from the — side to + side of T'. (b) Zoomed-in view of the fluid domain Qj
within the crack, along with the mesh used to resolve viscous boundary layers near the crack walls.
The arc length along the crack is s and the distance across the crack width, normal to s, is n.

construction of the semi-discrete approximation in a manner that leads to an energy
estimate and thus stability [33]. Consider the curvilinear coordinate transformation
x=x(q,7),y =ylg,r) <> ¢ = q(z,y),r = r(x,y), mapping (z,y) € s to (¢,7) € Q.
We assume a smooth, one-to-one mapping, and define 2, = [0,1] x [0, 1] as the ref-
erence unit square. Following [11], we transform the elastic wave equation by writing
(1) in conservative form and (2) in non-conservative form [28], which leads to

v 9] 0 Jo v v
sJ— = —(JA —(JA,0), S— = AT — 4 AT _
3) PsT gt = g\ Aa0) + 5rUA) S = Ay 5o+ Ar gl
where
_lgz 0 gy lre 0 7y
(4) A(I - |:O qy qw:| 9 Ar - |:0 ’ry Ty .
In (4), the metric coefficients gz, gy, ..., are obtained by taking partial derivatives

of each coordinate. For example, g, = 9q/0x. The metric coefficients are the only
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WAVE PROPAGATION ALONG FLUID-FILLED CRACKS 5

quantities which use compact derivative notation, and should not be confused with
the  and y components of a vector. Furthermore, J > 0 is the Jacobian of the
mapping, defined as J = x4y — yqx,. The metric coefficients satisfy the metric
relations Jg, = y,, Jre = —yq, J@y = —2p, Jry = 24.

The coupling conditions will be stated using the solid fields locally oriented with
respect to the curved fluid-solid interface. We therefore define the velocity V' and
traction T expressed in terms of the normal and tangential components given by the
unit normal 7 and unit tangent § along I' (Figure 1a). We have

A,

(5) V =1lv,v]" =R" and T =0, 0" =R" o]

g,

where v,, and vs are the normal and tangential components of the solid particle ve-
locity, respectively, and o,, and o5 are the normal and shear components of the solid
traction, respectively. To obtain these components, we have introduced the rotation
matrix R:

) # =] = e [ )

where |Vr| = (r2 + 7‘5)1/2.

2.2. Fluid. The fluid is governed by an approximation to the linearized com-
pressible Navier-Stokes equations. It has density p¢, dynamic viscosity p, and bulk
modulus Ky. The fluid equations are stated in a coordinate system (s,n) locally
oriented with respect to I', for which s is the arc length along I' and n measures the
distance across the width of the crack in the direction normal to s. The upper and
lower crack walls are initially located at n = w(s) (Figure 1b), but are perturbed to
n = w*(s,t). The initial width of the crack is defined as wg = wg (s) — wy (s).

Following the usual procedure for deriving lubrication-type approximations [41,
3, 18], a scaling analysis of the momentum balance in the n-direction establishes
uniformity of the fluid pressure across the width of the crack. Conservation of fluid
mass, together with a barotropic equation of state, leads to the first governing equation
for the fluid. The linearized version of this equation is, on T,

wy Op 0O N 8w+_8w’
Q K o0 T g5 W0 = ( ot ot )

for pressure p(s,t) and width-averaged velocity

+

(8) a(s,t) = N /wo u(s,n,t)dn,

wo wO_

where u = u(s,n,t) is the fluid velocity in the s-direction. Equation (7) is derived by
integrating the local form of the continuity equation across the crack width, using the
kinematic condition to replace the normal component of fluid velocity with the crack
opening rate, and linearizing about a state of rest.

At this point, the classical lubrication model would neglect inertia by assuming a
fully developed Poiseuille flow profile, for which

2 + =
(9) u:%(_%)+w
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6 OSSIAN O’REILLY, ERIC M. DUNHAM, JAN NORDSTROM

where v} —v} is the discontinuity in the tangential component of solid particle velocity
across I'. However, at the frequencies of interest to us, fluid inertia leads to non-
parabolic velocity profiles with Stokes-type boundary layers adjacent to the crack
walls [3]. To obtain a physically relevant 4 we must therefore solve the s-momentum

balance on the two-dimensional domain 2y:

ou Op Ot
where
ou
(11) T= g

is the shear stress. Equation (10) retains, on the right-hand side, a single viscous term
describing shearing on planes parallel to I'" and diffusive momentum transport across
these planes. Effects of curvature have been neglected in the momentum balance,
under the assumption that the radius of curvature of I' is comparable to or larger
than the wavelengths of interest. Note that when inertia is neglected, the solution
to the momentum balance equation (10) with no-slip conditions on the crack walls
provides the classical lubrication solution (9). In this classical lubrication limit, the
associated shear stress on the top and bottom crack walls is

s wo [ Op\ | plvf —v7)
(12) T —:FQ ( 85>+ ™ .

Note that while the method developed in this paper uses the more general lubrication
model that accounts for fluid inertia, it would be a straightforward extension to instead
use the classical lubrication model embodied in equations (9) and (12).

We apply a coordinate transformation in the s direction for compatibility with
the curvilinear grid used in the solid. We also apply a coordinate transformation in
the n direction in the fluid to resolve the boundary layers by clustering grid points
near the walls. Consider the coordinate transformation s = s(q),n = n(q,r) <> ¢ =
q(s),r = r(s,n) that maps (s,n) € Q; to a reference unit square Q; = [0, 1] x [0, 1].
Note that since s is the arc length of T', it can only depend on q. The Jacobian and
metric relations become J = s¢n,, s, =0, Jgs = n,, Jrs = —ng, Jg, =0, Jr, = s4.
Transforming (7), (8), (10), and (11) leads to the final governing equations for the
fluid:

wo Op 2( 7) = — ow'  dw”
YKot a0 T T\ Tar T o )0
ou Op or

J— ra. a9
P17 oE o T T

(13) .
ﬂ(Qv t) - - / u(q7 T, t)nrdrv
wo Jr=0
Ju
T= g

2.3. Fluid-solid coupling conditions and well-posedness. Having made
several approximations, we must verify that our problem is well-posed. Well-posedness
is established by enforcing the fluid-solid coupling conditions such that the governing
equations satisfy a mechanical energy balance. In this analysis, we weakly enforce
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WAVE PROPAGATION ALONG FLUID-FILLED CRACKS 7

the coupling conditions. This procedure simplifies the proof of stability in the semi-
discrete case, following later.

For simplicity, we consider only the + side of the interface I'; the — side is treated
in an analogous manner, and boundary conditions on the solid have been discussed
extensively in previous work [22, 23, 11]. Since the fluid mass balance is stated on T,
we only consider the term dw™ /0t in (13), which will be coupled to the solid on the
+ side. To simplify the notation in this section, we drop the + superscript.

The fluid-solid coupling conditions for a viscous fluid are obtained by balancing
the tractions across the interface and enforcing the kinematic condition and no-slip
condition to ensure that the fluid and solid remain in contact at the crack walls:

ow

T
e u} and T = [o, os]7 = [-p 7]T.

(14) V=l " = |

The negative sign on fluid pressure arises because pressure is positive in compression,
the opposite of the sign convention for solid normal stresses.

There are many ways in which the coupling conditions (14) can be enforced. One
approach is to weakly enforce a common interface velocity ‘A/A = IV” ‘7S]T on the fluid
and solid velocities, and a common interface traction 7' = [T}, T,]* on the fluid and
solid tractions. This procedure uses the fact that the fluid velocities, solid velocities,
and tractions are continuous. The interface velocity and traction are determined
by satisfying the proper mechanical energy balance of the overall problem. In the
limit when the coupling conditions become strongly enforced, the fluid and solid
velocities and tractions bhould be equal to the interface velocity and traction, ie.,
V = [on v]" = [0w/0t u]" and T = [0, 04)" = [-p 7]7.

Since our governing equations are formulated in curvilinear coordinates, we state
all integrations with area and length differentials in the curved domain. The rela-
tionship between the area differential in the curved domain and transformed domain
is dQ) <> Jdqdr. Furthermore, the relationship between the line differential for the
interface I" in the curved domain and transformed domain is ds <> J|Vr|dq.

To obtain the mechanical energy balance satisfied by the fluid and solid, we
consider the following variational form of the solid:

Tc’)v T \T r
JA,0)d2 R ¢s)" (T'—T)d
/qspat /qﬁgm )+ 0] o IA 0+ [ (R 6T~ Thds

T T
/Q S = / TAT TATZ dQ—&—/F(RAT(pS)(V—V)ds.

for smooth, vector-valued test functions ¢, 95 € L*(2s). In (15), the integrals along
the interface I' are penalty terms, which weakly enforce the coupling conditions. The
rotation matrix R is defined in (6) and arises because the coupling conditions are
stated in terms of normal and tangential components. One can derive the penalty
terms by applying integration by parts to the corresponding volume terms. Another
possibility is to introduce an unknown weight ¥ in the penalty term and then deter-
mine this weight by satisfying the energy balance [34].
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8 OSSIAN O’REILLY, ERIC M. DUNHAM, JAN NORDSTROM

The fluid variational formulation is

Wo 3p

[ org Sy + s o inyas = = [ o Glas
ou dp or

e s La0 = | o Eld0
(16) /Qf PIPf 5y +vrq B4 /7“ P,

. o .
—/gof(T—T)—i—urn ('Df( — Vs)ds,
r 67"

for smooth, scalar test functions ¢ € L3(T) and s € L*(Qy).

Next, we determine V and T such that the overall problem satisfies the proper
mechanical energy balance. The choice of V and T resulting in well-posedness is
specified in the following proposition.

PROPOSITION 1. The fluid-solid problem (15) and (16) is well-posed and consis-
tent with the coupling conditions (14) if V and T are chosen as the linear combinations

V= ,
Ay, Oés+ﬁs as+ﬁs

¥ |: Jn+p Bsu+asvs Us_T:|T
Upn + )
(17)

/BSJS +TaS:|T

T = |:_p7 asﬂs (’US — U) + a +B

as + fBs

for{an,as,Bs >0} U{as; =0, Bs >0} U{Bs =0, ay > 0}.

Proof. By choosing test functions ¢ = v, s = 0, ¢y = p, ¢y = w in (15) and
(16), combining terms, and integrating by parts, we find

dE
dt

+ & = —/ (vnan—i—vsas—vn(an—Tn)—vs(as—TS)
r
—op(vn — Vn) —os(vs — ‘Zq))ds
—/ %—?—Tu+u(7’—ﬂ)+7(u—%)ds.

In (1), ® = fo 72/udQ) > 0 is the viscous energy dissipation rate and, E is the
mechanical energy

1
(18) E:f/ psvlv+ T Sad + - / il pPds + = / prutdS,
2 Q. 2 Qf

where the respective terms are the kinetic and strain energy in the solid, and the
elastic and kinetic energy in the fluid.

Next, we add and subtract T,,V,, and T,V, to the right-hand side of (1), which
after some algebra leads to

dE PPN PEIN . - . -
E + (D - / TnVn +TSV9 - (Un - Tn)(vn - Vn) - (Us - Ts)(vs - Vs)ds
r

(19) - /p‘lw TV 4 (u— V) (7 — Ty)ds.
Po

—(P+R),

This manuscript is for review purposes only.
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where

(200 P= / T+ p 2 s,
. ot

(21) R = /F(u — Vs)(T —Ts) — (on — Ty)(vn, — V) — (05 — Ts)(vs — Vs)ds.

In (19), we have partitioned the right-hand side into two terms: P and R. The first
term P contains the flow of energy from the fluid to the solid and vice versa. When
the coupling conditions are enforced, this term must vanish. The second term R is a
residual term arising due to the weak enforcement of the coupling conditions. This
term needs to be non-negative and to vanish when the coupling conditions are exactly
satisfied. To obtain a well-posed problem, we therefore need to choose V and T such
that P =0 and R > 0. By choosing

(22) Tn = —p and Vn = %—1:7

we obtain P = 0. To bound R, consider the choice

(23) On — Tn = *Oén(vn - Vn); os—Ts = 7045(1)5 - ‘A/:G)v T = Ts = 55(” - ‘75)7

for penalty parameters oy, o, By > 0. Guidelines for choosing these penalty param-
eters are given later. Then (21) becomes

R = / (0 — V)2 + (0 — V)2 + Bt — V)2 > 0.
I

By inserting (22) and (23) into (19), we obtain the bound

B =-d-R<0.

dt
Note that R vanishes when the coupling conditions are satisfied exactly, and the
energy balance in this limit exactly coincides with the correct mechanical energy
balance (i.e., dE/dt = —® < 0).

When implementing this scheme, we need to determine V and 7. This is done
by solving (22) and (23) for V and 7', which yields the stated solution (17). Finally,
to show that (17) is consistent with (14), insert (17) into the variational formulations
(15) and (16). 0

3. Semi-discrete approximation. In this section, we utilize the results estab-
lished in the previous section to construct a stable, semi-discrete approximation. We
closely follow the continuous analysis by formulating the semi-discrete approximation
in variational form. This will be done by using SBP operators, which are necessary
for obtaining a discrete energy estimate and hence a proof of stability.

3.1. Definitions. While a multiblock discretization is used for both the fluid
and solid domains in realistic applications, we keep the presentation brief by focusing
on only one solid and one fluid block. The solid block is located above the crack, as
illustrated in Figure 1a. Let the reference domain 2 = [0, 1] x [0, 1] be discretized
by an (N; +1) X (N, + 1) two-dimensional grid. Furthermore, let the two coordinate
directions g and 7 in the reference domain be discretized by ¢; = iAq for 0 <i < N,
and r; = jAr for 0 < j < N, using grid spacings Ag = 1/N, and Ar = 1/N,.. For
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346

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

10 OSSIAN O’REILLY, ERIC M. DUNHAM, JAN NORDSTROM

each field, we introduce a grid function u;;(t) = u(g;, r;j,t), which is stored in a vector
u(t) with r being the contiguous direction. The storage order of w;; is, of course,
arbitrary, but our particular choice facilitates organization and presentation through
use of Kronecker tensor product notation.

Having introduced grids and grid functions, next we define SBP operators. An
SBP first derivative difference operator is given in Definition 1; its properties are
satisfied by construction.

DEFINITION 1. The difference operator D is a summation-by-parts first derivative
SBP(2s,s) with interior accuracy 2s and boundary accuracy s with following properties.
1. The diagonal matriz H > 0 defines the discrete norm

1
(24) Il = 6" Ho, [l = 6)? = /O ¢*dz,
for a smooth test function ¢ and a corresponding grid function ¢.
2. The SBP property
(25) HD + DTH = B = diag([-1 0 ... 1))
holds. Here, B is the restriction of ¢ to the right and left boundary:
0" Bo = 6} — 5.
For more details concerning accuracy relations, see [42, ?].
3.2. Solid. By using the definition of the SBP difference operator, we discretize
the variational formulation of the solid (15):
(26)
o1 (I © pMs)

d
di; = ¢TIy ® MyJ ) (1o ® Dy @ 1) (I ® J) A,

+(L® 1, @ D) (I, ® J)A)o + (RTLL ¢,)" (I, ® M,)(T - T),
do

= =01 (s ® M) (A] (I, © Dy ® 1) + Al (I © I, ® Dy))u
+ (L@ |Vr| 'R LyArg,)" (I @ M) (V = V).

¢§5(13 ® Ms)

In (26), all of the material properties, Jacobian, and metric coefficients, evaluated
at each grid point, are stored in diagonal matrices. The matrix Is is a 2 X 2 iden-
tity matrix, and ® is the Kronecker product. The difference operators D, and D,
are SBP finite difference operators (see Definition 1). The matrices A, and A, are
block diagonal matrices containing the metric coefficients (approximated using SBP
operators). In the penalty terms, the operator L, is used to obtain the velocity V
and traction T on the interface. For example, we compute V using V = RTLTv,
where Ly = I ® I, ® eg, and ¢g = [1 0 ... 0]7. The rotation matrix R is defined
using (6). The interface velocity V and traction 7', given in (17), are determined in
a similar manner. The mass matrices M, and M, are diagonal matrices obtained by
approximating integrals over 25 and along I', respectively, using the SBP quadrature
rules given in Definition 1. We have M, = J(H, ® H,) and My = LT J|Vr|LH,,.
Since the variational formulation holds for all non-trivial test functions, we obtain
the strong formulation of the semi-discrete approximation of the solid by eliminating
the test functions in (26) and inverting the matrices on the left-hand side. Note that
the strong form of the equations (26) can be directly advanced in time using explicit
time stepping since the mass matrices are diagonal and the inverse of S is known.

This manuscript is for review purposes only.



389

WAVE PROPAGATION ALONG FLUID-FILLED CRACKS 11

3.3. Fluid. Many of the definitions needed to formulate the semi-discrete ap-
proximation of the solid equations are also used to formulate the semi-discrete ap-
proximation of the fluid equations. One difference, however, is the appearance of the
second derivative operator in the viscous diffusion term. While the second derivative
can be constructed by applying the first derivative twice, this procedure leads to a
difference operator with sub-optimal stencil width and accuracy. Therefore, in our im-
plementation, we use a compact second derivative operator with variable coefficients
[30]. However, since the presentation and proof of stability become more complicated
when using compact operators, in the derivation below we use the first derivative
applied twice.

The discretization of the weak form of the fluid governing equations (16) is

(27)
_ Jw
o7 M; (wOK = +qu uwo) = —quTMfa

du _ .
Pr Mf <Pf di + (gsDgp) ® er) = W?Mfrn(jq ® D)7 — (L?Saf)TMf(L?T = T5)
— (L] (1, ® Dy)og) Myra (Lfu—V5).
In (27), the shear stress 7 is determined by
(28) T = pn,(I; ® D;)u.

The width-averaged velocity @ is computed using the SBP quadrature rule:
1 r=1

(29) = (wo® el H)nyu~ — / un,.dr,
wWo 0

where e, = [I 1 ... 1]7. We approximate volume integrals over ¢ and surface
integrals along I' using My = (sqH; ® H,)n, and Mf = Hgsg, respectively. Since
the quadrature rules along the interface on the fluid and solid sides are constructed
in the same way, we define M = M r = M,. Note that the quadrature rule H,., used
to calculate %, is the same as the one constructing M. This is required to obtain an
energy balance for the semi-discrete approximation.

3.4. Stability. Finally, we show that the semi-discrete approximation is stable
through the following proposition.

PROPOSITION 2. The fluid-solid semi-discrete approzimation given by (26) and
(27) is stable.

Proof. The results follow from Proposition 1 and use of the SBP property (25).
The energy (18) is approximated as

1 1 1 . 1
By = 5vT(Iz ® psMy)v + 5aTS(Is, ® M;)o + ipTwoK_lep + §qufou-

The semi-discrete approximations (26) and (27) satisfy

dih + ®p = —an (v — Vn)TM(Un — Vn) — o (vg — ‘A/S)TM(DS _ Vs)

0.

\
&
®
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=
®
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Here, ®, = 77 M7/ > 0 approximates the viscous energy dissipation rate. Since
the energy rate of the semi-discrete approximation is non-positive, the numerical
solution is bounded, implying stability. The terms arising from the weak enforcement
of the coupling conditions yield additional numerical dissipation, vanishing with grid
refinement. 0

4. Fully discrete approximation. Next we turn our attention to time step-
ping. While the overall problem is dominantly one of wave propagation, there are
several sources of stiffness. Our objective here is to advance the solution in time,
with high-order accuracy, using a fully explicit method for the elastic wave equation
(anticipating that this will dominate the computational expense) and with a time step
limited only by the usual CFL condition for wave propagation. To overcome stiffness,
we formulate the fully discrete scheme by first partitioning the semi-discrete approxi-
mation into stiff and non-stiff parts. The latter accounts for all terms in the governing
equations describing wave propagation in the solid and fluid. Then we advance the
partitioned system in time using a high-order implicit-explicit (IMEX) Runge-Kutta
method [1, 4, 7, 20]. The stiff and non-stiff terms are integrated implicitly and ex-
plicitly in time, respectively.

The semi-discrete approximations (26) and (27) are written in matrix-vector form
as

dq _ |4y _\Ws 0 ~ |9 Crs
(30) dt_Wq-i-Cq-i-g(t)aq—[ ]’W_{O W y €= Cor Cs |7

where g¢ = [pT, u”]T and ¢5 = [v7, o7]7. In (30), the matrix W holds the difference
operators and boundary terms of the fluid and solid, C' holds the fluid-solid coupling
terms, and g(t) is a forcing function containing external data. We partition (30) into

dq

(31) o FIMg 4+ FEX g+ g(t),
where
wiM ¢, C WEX 0
IM _ F f fs EX _ f
(32) d 0 o}’ F [csf M, +C,

will be treated implicitly and explicitly, respectively. The partitioning of W treats
diffusion (contained in Wfl M) implicitly and wave propagation (contained in WEFX)
explicitly. In this work we apply the time integrator ARK4(3)6L[2]SA-ESDIRK (im-
plicit component) and ARK4(3)6L[2]SA-ERK (explicit component) presented in [20].
For future reference, we shall refer to this scheme as ARKA4.

4.1. Choice of penalty parameters. The stiffness of the partitioned, fully
discrete scheme (32) is influenced by the penalty parameters «,, as, and 85 appearing
in Proposition 1. We explain how to choose the parameters such that the maximum
stable time step is set by the usual CFL condition for wave propagation.

To determine the maximum stable time step, we compute the spectral radius
of the IMEX stability function given in [4]. This function is the iteration matrix
}AB(F EX FIMY of the fully discrete approximation

(33) ¢"*! = R¢",

with g(t) = 0 in (32). In (33), ¢* denotes the numerical solution at time t;, = kAt

~

for k = 0,1,2,..., and At is the time step. If the spectral radius p(R) > 1, then
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the approximation is not stable. The maximum stable time step is then defined as
max At s.t. p(R) <1 and R is diagonalizable.

As in our previous work [22; 23, 11], the solid penalty parameters «,, and a; are
chosen to match the compressional and shear wave impedances, respectively:

(34) an =2y =pscpy and a, =Z; = pscs,

where ¢, = \/M/ps is the compressional wave speed, with M = 2G(1—v)/(1-2v), and
cs = v/ G/ ps is the shear wave speed. We refer to this choice of penalty parameters as
the characteristic choice because as and a,, can be obtained by solving the Riemann
problem of the elastic wave equation.

The fluid penalty parameter (s is determined by minimizing the spectral radius
of the semi-discrete approximation of a one-dimensional model problem describing
plane shear waves normally incident on a layer of viscous fluid. Thus, we consider the
coupling of the shear wave equation to the diffusion equation in one dimension:

% B 004y as(ogy —7) B s B

[ o= [ 0.5+ [on (M7 - P )]
1 0ogy % Bs(vy — u)  Ouy =T

/@SG ot dy /SDS 8ydy+[¢s< as + Bs as-l-ﬁs)}y:oﬁ

/¢fﬂf*dn = /¢f7'dn - [¢f (68(2 J_r ;:y) + af‘fsﬁs (u— Uw))

S (i) T o)

+p

n:wg'.

In (35), the crack is located at y = 0 in the solid. We have weakly enforced the
coupling conditions v, = u and o,, = 7 on the top crack wall (y = 0" in the solid
and n = wO+ in the fluid) using Proposition 1.

Since the penalty parameters carry units of impedance, a reasonable choice for
Bs would be the fluid impedance. For a time-harmonic solution in the boundary layer
limit the fluid impedance is Zf(w) = (upsw)*/2. However, since the fluid impedance
depends on the angular frequency w, we cannot use it directly. Instead, we estimate
it in the following manner. Let w* be a frequency of interest. Then, for accuracy,
we constrain the fluid and solid grid spacings to be Az = (u/psw*)*/? (to resolve
the momentum diffusion length at this frequency) and Azs = ¢;/w* (to resolve shear
waves), respectively. The impedance parameter can be chosen as 8, = Zy(w*) =
p/Axy.

While S, = p/Axy is a reasonable choice for many problems, it is not always
optimal. To demonstrate this, we also investigate two alternative choices that arise
in certain limits, specifically when the fluid impedance vanishes (8; = 0, as for an
inviscid fluid) or when the fluid impedance approaches infinity (8; — o). To enforce
Bs — 00, we analytically take the limit. Then (35) becomes

vy , 00 3y
/%waw—/%ay@ [t —w]
1 aamy Oy,

/(ﬁfpfai;dn:/qsﬂdn* |:¢f((7_70-1y)+Oés('u7vm)):|n:w:.
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The part of parameter space that we investigate depends on the ratio of the fluid
impedance Z; (in the boundary layer limit) to solid impedance Z,:

Zi _ NwTpy _ Axgpy
Zs PsCs Azgp,’

")/:

For simplicity, we restrict attention to ps = p; and use the SBP(6,3) operators to
discretize (35). For each choice of s, we compute the spectral radius p(W + C)
as a function of the impedance ratio v (Figure 2). Here, the W + C is matrix in
the semi-discrete approximation of (35), which can be put in the same form as (32).
Figure 2 shows that §; = 0 minimizes p(W + C) for v < 1, whereas for larger values
of v, Bs — oo is the optimal choice. Note that for v < 1, the spectral radius for
Bs = pu/Axy is nearly identical to that for 85 = 0. Therefore, in our implementation,
we never use s = pu/Axy, because it is more complicated to implement and shows
no benefit compared to 5; = 0 for v < 1.
Instead, we propose the following strategy for choosing fs:

0, < A
(36) Bs—{ T
0o, ¥ >v

The parameter v* is defined as the value of v at which p(W + C(8, = 0)) = p(W +
C(Bs — OO)), as estimated from Figure 2. For the example shown, v* ~ 1071,

104 F B
& i 1
q|° L i
< 10% ) -
+ i 1
% B i
= 107 | -
3 z E
ho) - |
e | n
TQ 10" b E
2 R 1
o B |
n | |
100 | | | | | | |
1077 107° 1073 1071 10 103 10°
Axf
Axg

Fi1G. 2. Spectral radius p(W + C) of the semi-discrete approzimation of the problem (35).

Note, however, that while this choice ensures that the spectral radius of the semi-
discrete approximation is minimized, there is no guarantee that the fully discrete
approximation is stable for a time step set by the usual CFL condition for wave
propagation. For example, the use of energy-conserving coupling conditions, which
are traditionally used in many fluid-structure interaction applications, results in loss
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of stability (see Appendix A for more details). By also analyzing the fully discrete
approximation, we have found that when choosing the penalty parameters as (34)
and (36), the maximum stable time step remains constant regardless of the amount
of stiffness (i.e., the time step is not restricted by the width of the fluid layer or fluid
properties). We have therefore achieved our objective of developing a fully discrete
scheme that can be advanced with a time step determined only by wave propagation.

5. Numerical Experiments. In this last part of the paper we investigate the
accuracy of our numerical scheme using the method of manufactured solutions and
showcase the code capabilities with two application problems featuring a curved,
branching crack.

5.1. Manufactured solutions. We construct a smooth solution and quantify
error and convergence rate using the method of manufactured solutions [40]. Param-
eters are chosen for which the semi-discrete equations are quite stiff; this provides a
comprehensive test of the partitioning and IMEX time-stepping procedure.

wn
e

2a

i
(a) Solid grids (b) Crack geometry

F1G. 3. MMS wverification problem. Two square blocks, Q1 (blue) and Qg (red), are joined along
the fluid-filled crack T', which has the nonplanar geometry shown on the right.

Let the solid domain 2 be the rectangle [0, L] x [-L, L] with a nominally planar
crack I" at y = 0 (see Figure 3). Since the geometry is not curved in this test, we will
denote all fields using Cartesian coordinates x, y. The geometry is discretized using
two elastic blocks (one on each side of the crack) with (n + 1) x (n + 1) grid points
and a single fluid block of size (n+1) x (m+1) , where n = 12x 2/, m = 16 x 27, and
j=1,2,...,5. A manufactured solution is constructed by adding forcing functions
to the governing equations and boundaries and by exactly satisfying the coupling
conditions (14). The manufactured solution in the fluid and the crack geometry are

(37) p(z,t) = sin(kx) cos(wt), u(z,y,t) = sin(kx)sin(ky) cos(wt) + sin(kz) cos(wt),
(38) wy (z) = a+b(1 —sin(kx)) sin(kz), wy () = —a — b(1 — sin(kz)) sin(kz),
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a b Pf Co o Ps Cp Cs
Im-01 0la 1g/em® 1.5km/s 1mPas 2g/em® 5km/s 3 km/s
mm

TABLE 1
Fluid and solid properties used in the MMS verification problem. The same fluid properties are
used in the branching crack problem.

| n=24 n=48 n=96 n=192 n=384
p(My)/p(M,) | 22x 107 3.0 x 10T 57 x 10" 1.1x10° 2.3 x10°

TABLE 2
Spectral radius ratio, a measure of stiffness for the MMS verification problem.

respectively. We prescribe the motion of the interface using

(39) % = sin(kx) sin(wt), &UT(:J) = —sin(kx) sin(wt).
The manufactured solution in the solid is
ve(z,y > 07 t) = u(z,wl , t)e(ky), velr,y <07,t) =u(z,wy ,t)c(ky),
vy(z,y > 07, 1) = s(ka)s(wt), vy(z,y < 07,1) = —s(kx)s(wi),
(40)  oue(z,y = 07, t) = c(ka)e(ky)e(wt), oze(z,y < 07,t) = c(ka)c(ky)c(wt),
oyy(z,y > 01, t) = —p(z, t)c(ky), oyy(z,y <07,t) = —p(z,t)c(ky),
Ouy(2,y 2 07, ) = 7(2,wq , t)e(ky), ouy(z,y < 07,¢) = 7(z,wy , t)e(ky),

where 7(x,y,t) = pou/dy = pks(kz)c(ky)c(wt), c(z) = cos(x), s(x) = sin(x), k =
2r/L m~' | L =1m, and w = 20 s~!. For the manufactured solution to satisfy the
governing equations of the fluid and solid, we need to add forcing functions. These
forcing functions are obtained by inserting (37)-(40) into the governing equations. To
conserve space, we have omitted presenting the forcing functions. Initial conditions
are determined by evaluating (37) and (40) at t = 0. Boundary conditions are enforced
by specifying (37) and (40) as data on the incoming characteristic variable. Additional
parameters are listed in Table 1. After discretizing with SBP-SAT, the semi-discrete
approximation becomes stiff (Table 2).

The numerical error (™)) = (") —4* is defined as the difference of the numerical
solution u(™), and the exact solution u* sampled at the grid points of the j* grid
and computed using (37) and (40). The convergence rate is

(ny)
rate = log, (|€|h> ,

||e(ng+1) In

where ||e(™) ]|, is the norm of the error, in the energy norm on the j** grid. Time
integration is carried out using ARK4 to the final time ¢ = 0.16 s with a time step At =
h/cp,, where h is the grid spacing in the solid. We test using the SBP(6,3) operators.
Table 3 shows that the scheme is 4*"-order accurate, confirming the expected order
of accuracy [43].

5.2. Branching cracks at a material interface. Next we present two ap-
plication problems featuring a curvilinear crack branching into two additional crack
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n=24 n=48 n=96 n=192 n =384

wo =1 m log, error 0.04 -1.13 —-2.75 —4.27 —5.64
rate 3.90 5.37 5.05 4.56

wo = 0.1 m log,q error | —0.55 —1.83 —3.13 —4.42 —5.73
rate 4.27 4.31 4.30 4.35

wo = 1 em log,, error | —0.63 —-1.87 —3.13 —4.42 —5.73
rate 4.11 4.21 4.29 4.35

wo = 1 mm log,, error | —0.63 —1.87 —3.13 —4.42 —5.73
rate 4.11 4.21 4.29 4.35

we = 0.1 mm log,, error | —0.63 —1.87 —-3.13 —4.42 -5.73
rate 4.12 4.21 4.29 4.34

TABLE 3

Errors and convergence rates for the MMS verification problem.

‘ Ps G v Cp Cs
Q| 24¢g/em® 10 GPa 0.3 3800 m/s 2000 m/s
Q9 | 24 g/ecm® 20 GPa 0.3 5400 m/s 2800 m/s
TABLE 4
Solid material properties for Q1 and Q2 in the branching crack problem. Compressional and
shear wave speeds ¢, and cs have been computed from the density ps, shear modulus G, and Poisson’s
ratio v.

segments along a material interface. This geometry can arise in many natural and
engineered systems (volcanoes, oil and gas reservoirs, and glaciers) due to hydraulic
fracturing of material 2. Continued influx of fluid causes the crack to grow through
Q1 until it encounters a stiffer material (23. The crack then branches by exploiting
joints (pre-existing fractures) along the material interface. Figure 4 shows the setup.
The fluid-filled crack is represented by 5 piecewise smooth and connected segments
I'; (see Appendix 2 for coupling conditions at the crack junction). The main crack
is 5 mm wide and the branches are 1 mm wide at the junction and 0.01 mm wide at
the crack tips. The fluid and solid material properties are listed in Tables 1 and 4,
respectively.

The computational domain is discretized using a multiblock grid (Figure 4).
Boundary- and interface-conforming structured grids are generated using cubic B-
splines and transfinite interpolation. The Jacobian and metric coefficients for each
grid are computed using the SBP(6,3) first derivative operators. While the Jacobian
is smooth inside each block, it is discontinuous across the interfaces.

We use the SBP(6,3) finite difference operators and qualitatively assess grid con-
vergence by performing several levels of grid refinement. To advance the solution in
time, we use ARK4 with a time step At = 0.7 X hnin/Cmaz, Where ¢pae = céz) and
Rmin 18 the minimum grid spacing in the solid. On the coarse grid, the minimum
grid spacing in the solid is A = 1.9 mm and in the fluid (in the n direction) it
iS Apin = 62.5 nm. With a fully explicit time stepping scheme we estimate that we
would need to reduce the time step by at least two orders of magnitude.

Below we present results for the two problems. Both have exactly the same
geometry, mesh, material properties, and boundary conditions; they differ only in
how waves are excited. In both problems, the fluid and solid are initially at rest,
except as indicated.
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(a) Unstructured multiblock grid. (b) Zoom-in.
F1G. 4. Geometry of branching crack problem. A fluid-filled crack T cuts through the solid Q1

(blue) before branching, at the interface with a stiffer solid Qo (red), into two crack segments along
the material interface.

0 um/s

(a) ¢t =26 ms.

0 um/s

X

(b) ¢ =50 ms.

Fic. 5. Snapshots in time of Krauklis waves propagating along a fluid-filled crack (solid line);
color shows velocity in = direction. The discontinuity in color indicates opening/closing motions of
the crack. 241 x 241 grid points per block.
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2.5 cm/s

v-z.\E\J\ (AR RN N HH&HH Lt

(a) t=26 ms.

Cross
section 1
Cross
section 2
«l)-2.\5\\\\\\\‘\\\\l 0 HH\HHH\Z\.S cm/S
(b) ¢t =50 ms.
0.1 0.4
ol ]
0.3} 1
—0.1
3 % 0of |
T 02 1 B
—0s3l J 01} 1
—04l J
Il Il Il I or Il Il ]
04 02 0 0.2 0.4 —0.1 0 0.1
7, (mm) 7 (mm)
(¢) Cross section 1. (d) Cross section 2.

F1G. 6. (a) and (b) Snapshots in time of fluid velocity field inside the main crack and branches.
(¢) and (d) Velocity profiles for the cross sections marked in (b). Note boundary layers and non-
monotonic profiles, both characteristic of oscillatory flows at high frequency. 241 grid points along
each crack segment and 241 grid points across the crack width.

5.2.1. Excitation at the crack mouth. In this first problem, waves are excited
by specifying a pressure boundary condition p(0,t) = g(¢t) on I'y (the bottom end of
the main crack, referred to below as the crack mouth). Excitation at the crack mouth
preferentially generates Krauklis waves that propagate along the cracks, ultimately
leading to resonance at specific frequencies determined by the crack geometry. Crack
mouth excitation can arise from pressure changes transmitted to the crack by an
unmodeled narrow conduit or pipe, such as a well in hydraulic fracturing operations
in an oil or gas reservoir. For more details on this problem class, see [26]. The
boundary data is g(t) = Asin(wt) exp(—nt), where A = 100 kPa, w = 1.2 x 105 s71,
and n = 100 s~!'. This function is a chirp with a maximum frequency fmqez ~ 2000
Hz at 1% of peak amplitude. The maximum frequency f,q. is used to estimate
the minimum wavelength \,,;, that needs to be resolved in the simulation. The
relationship between wavelength \ and frequency f is determined by the dispersion
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relation of the Krauklis waves propagating along the crack. For an infinitely long,
planar crack filled with an inviscid fluid, we have [24]

B Gy 1/3
A= <2W(1 - V)pfo) '

We can then estimate A ~ A(fmaz) ~ 0.1 m, suggesting that \.,;, will be well-
resolved on both the coarse and fine grids. To set the grid spacing in the n-direction
within the fluid, we estimate the ratio of the boundary layer thickness to crack width
as \/p/(psw)/ maxwy ~ 10%, which should also be well-resolved on both the coarse
and fine grids.

The pressure perturbation applied at the crack mouth excites Krauklis waves
propagating along the fluid-filled crack (Figure 5). As Krauklis waves propagate along
the crack, the crack walls oscillate inward and outward. A pair of counter-propagating
waves are formed when the waves are partially reflected at the crack tips and the crack
junction. Krauklis waves are attenuated primarily by viscous dissipation in the fluid,
which in the wider parts of the crack is confined to boundary layers at the walls of
the crack (Figure 6). The coarse and fine grid simulations are visually identical (not
shown).

5.2.2. Excitation in the solid. This second problem, involving excitation in
the solid, demonstrates the potential of our method for studying seismic wave scat-
tering from fluid-filled cracks. Seismic waves in the solid can be excited by ex-
plosions or other active sources, or by naturally occurring impulsive perturbations
such as small earthquakes (i.e., microseismic events). The latter, when the earth-
quakes are much smaller than modeled wavelengths, can be treated as point mo-
ment tensor sources. Details on how to discretize the singular source terms with
high-order accuracy can be found in [37]. Here, for simplicity, we excite waves by
specifying a Gaussian function as the initial condition in the solid: wv,(x,y,0) =
exp (— 52z (z — 24)? — 522 (y — y+)?) mm/s, where a = 1//200 ~ 7.1 cm and
(s, yx) = (—1.5,—4) m with the origin located at the bottom end of T';. All of the
other solid and fluid fields are initially zero.

t=3.75ms

Vg um/s

Fic. 7. Snapshots in time of seismic wave scattering from a fluid-filled crack (solid line) and
material interface (dashed line). 481 x 481 grid points per block.

The initial disturbance excites both compressional (P) waves and shear (S) waves
that scatter from the fluid-filled crack (Figure 7). P-to-S conversion along the crack
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Vg umis Vg umis Vg umis

(a) 121 x 121 (b) 241 x 241 (c) 481 x 481

F1G. 8. Grid refinement study at t = 5 ms (grid points per block listed listed in sub-captions).

generates shear head waves, which have curved wavefronts due to the curvature of
the crack itself. All waves undergo reflections and additional mode conversations
upon reaching the branch segments (and material interface). Diffracted waves from
the crack junction are also evident. Note that in contrast to the previous problem,
Krauklis waves are almost absent. This is because excitation in this problem is from
a perturbation to particle velocity approximately normal to the main crack and with
symmetry across the crack. Opening or closing motions of the crack are therefore
negligible.

Figure 8 shows a zoomed-in version of the wavefield at the final time (¢t = 5 ms)
at three different grid resolutions. Dispersion errors that are evident on the coarsest
mesh vanish with refinement.

To investigate the computational cost of the fluid model, we compare the per-
formance of simulations with and without the fluid. In the simulation without the
fluid, we remove the fluid blocks and instead couple to the neighboring solid blocks
directly to one another. We measure the time to solution for both simulations after a
fixed number of time steps. The test is conducted on the grid with lowest resolution,
using 121 x 121 grid points per block in both the solid and fluid (when present). The
computational cost of the fluid is only about 8% of the total cost. This cost is slightly
less than the ratio of the number of fluid to solid blocks used in this test.

6. Conclusions. We have developed a method to simulate wave propagation
in and around cracks containing a viscous, compressible fluid. Our method achieves
computational efficiency relative to other commonly used methods through two key
components.

First, rather than solving the full linearized Navier-Stokes equations for the fluid,
we use a lubrication-type approximation of the fluid response. Viscous effects enter
only through one-dimensional diffusion operators in the direction spanning the crack
width. Even with this approximation, the semi-discrete system of equations can be
quite stiff, such that fully explicit time-stepping methods would require several orders
of magnitude smaller time steps than the time step required for explicit integration
of the elastic wave equation alone.

Second, the computational efficiency is enhanced by partitioning the semi-discrete
equations in conjunction with an implicit-explicit Runge-Kutta time-stepping method.
Specifically, we treat the elastic wave equation in the solid and the wave propagation
part of the fluid equations in a fully explicit manner, whereas the viscous (diffusion)
term and fluid-solid coupling terms in the fluid are treated in an implicit manner. By
enforcing the coupling conditions using characteristic variables, the overall system of
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equations can be integrated using the maximum stable time step for wave propagation
only. For typical fluid and solid properties, this corresponds to the typical CFL-limited
time step used for explicit solution of the elastic wave equation.

Although we developed the numerical scheme in the context of high-order finite
differences, the fluid model and many of the results related to the coupling formu-
lation and partitioning should be applicable to other provably stable schemes with
weakly enforced coupling conditions in SBP-SAT form (e.g., discontinuous Galerkin
methods).

Finally, the method was applied to several application problems involving waves
in and around fluid-filled cracks. Excitation at the crack mouth generates large am-
plitude Krauklis waves, and simulations like the ones shown in this work can be used
to quantify Krauklis wave resonances and their relation to crack geometry [26]. The
method can also be used to study scattering of seismic waves by fluid-filled cracks.
Obvious applications include seismic imaging of fractured hydrocarbon-bearing reser-
voirs, crevasse systems in glaciers and ice sheets, and magmatic dike and sill complexes
beneath active volcanoes.

Acknowledgments. This work was supported by a gift from Baker Hughes to
the Stanford Energy and Environment Affiliates Program and seed funding from the
Stanford Natural Gas Initiative. O. O’Reilly was partially supported by the Chevron
fellowship in the Department of Geophysics at Stanford University. We thank Ali
Mani for helpful discussions of lubrication approximations.

Appendix A. Energy conserving penalty parameters. This appendix
continues Section 4.1 with a more detailed investigation of how the stability of the
fully discrete approximation is influenced by how the coupling conditions are enforced.
This is done by further investigation of the one-dimensional model problem (35), but
with a different choice of penalty parameters. Specifically, we take oy — oo and
Bs = 0, for which (35) becomes

oo Sran= [0 55 ay+ [ou(o-7)] -

1 00y Ovg
s~ dy = s—m—d
(41) VsE g W /w oy W

/qﬁfpf%dn:/%chn— {u%’;f(u—vz)]n_wg.

The fluid traction is enforced as a Neumann condition on the solid and the solid
velocity is enforced as a Dirichlet condition on the fluid. This way of enforcing the
coupling conditions is a very common approach in many fluid-structure interaction
schemes [19]. A consequence of using (41) is that there is no additional numerical
energy dissipation:

1d 2 1 2 2 7'2

We next investigate the impact of this coupling procedure on the semi-discrete
and fully discrete approximations of (41). We write the semi-discrete approximation
of (41) in the strong form:

(13) Y w0
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where ¢ = [v] ol, u”]". We use the partitioning dg/dt = (FFX 4 FIM)q, with
FEX = WEX 4 OFX and FIM = WIM 4 CIM  Consider the following choice of the

partitioning:

wEX = |GD, 0 o, wiM=10 o 0 ,
| 0 0 0 0 0 p/pyD,D,
[0 H'LLT —pH 'LLYD,

EX

(44) cFX = 1o 0 0 ,
0 0 0
0 0 0
o 0 0 0

Pt H*DFL;LT 0 —H,'DIL;LY
For simplicity, the grid spacing is uniform, implying that there are no metric coeffi-
cients. This partitioning is the same as the one we used before; see (32). The solid is
fully explicit and the fluid is fully implicit (because in this one-dimensional problem
there is no wave propagation in the fluid).

104 p ]
O — Az |
i p(W + C)E 1
L _— p(FEX) % |
10% | E
z L ,
2 | |
]
T 10°) 1
9 B ]
o L il
[0} I B
10t | E
100 | | |
10~* 10~2 100 102 10%
Axy
Axg

Fia. 9. Spectral radii of the semi-discrete approzimation of the problem (41). The spectral radis
p(W + C) (complete problem) and p(FEX) (explicit part of the semi-discrete approzimation) are
shown.

Next, we compute the spectral radius of the semi-discrete approximation while
varying Az y/Ax,. Asin Section 4.1, we use p; = py and discretize using the SBP(6,3)
operators. However, for this new choice of penalty parameters, Figure 9 shows that
the spectral radius p(W + C) is at about one order of magnitude larger than the
spectral radius p(FEX) (which is determined by the explicit part of the semi-discrete
approximation, i.e., by wave propagation). Note that the spectral radius of the explicit
part p(FFX) does not change as Axy/Az, is varied, indicating that there is no source

This manuscript is for review purposes only.



~N N NN
~

743

746
747

24 OSSIAN O’REILLY, ERIC M. DUNHAM, JAN NORDSTROM

10! ¢ ]
EEEETC |
2 B :
g I ]
£ I ]
=
E
= 10715 =
= z |

102 | | | | L

10~4 10—2 109 102 104
Azy
Azg

Fi1c. 10. Mazimum stable CFL number of the fully discrete scheme approzimating the problem
(41) with partitioning (44).

of stiffness in the explicit part. However, when we look at the maximum stable time
step of the fully discrete approximation, we find that it is necessary to decrease the
time step for stability (Figure 10). The important lesson here is that this choice of the
penalty parameters, when used in combination with the partitioning (44), causes the
scheme to be unstable for sufficiently large Az s /Ax, unless the time step is decreased.
In contrast, the scheme is stable for the penalty parameter choice presented in Section
4.1 regardless of the value of Azf/Aw,.

Another way to stabilize the scheme (41), without changing the penalty parame-
ters, is to modify the partitioning. This modification should be done such that energy
is conserved in the fully discrete approximation as well. Consider the following energy
conservative partitioning:

0 H'L,LT 0
(45) cFX =10 0 0|,
0 0 0
[ 0 0 —u/pnglLsLTDn
f
M — 0 0 0
\1/psH ' DYLyLY 0 —p/ppH "Dy Ly LY

In this case, one can easily show that each sub-problem satisfies an energy balance,
implying (g, F¥X¢q) < 0 and (g, F'Mq) < 0, where (u,v) = > u;v;h is the discrete
inner-product, i.e., F¥X and FIM are both semi-bounded. We again obtain a fully
discrete scheme with the attractive property that the maximum stable time step is set
by wave propagation. In practice, however, we do not use this partitioning because
the solid penalty terms are treated implicitly, making it more difficult to implement.
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2. Crack junction coupling conditions. Consider the coupling of three cracks
at a junction. Prior to weakly enforcing the coupling conditions, the work rate at the
junction is

3

dE N (8) () Al

o - _ E n(’)w(() )ﬁ(t)a(i) ~ R,
i=1

where (i) labels each crack. We use n(?) to keep track of the sign at each end (n(9) = —1
and n(® =1 for the left and right end, respectively). While the crack can be in any
direction, the left end is defined at the minimum arc length s along the crack. At the
junction, the pressure is continuous: p = p(t) = p(2) = $B3). Mass conservation, in the
context of our linearized model, requires

3
(46) Z @ )p(z)w( )i = 0.
i=1

To ensure R > 0, we need
(47) a(i)n(i)w( D4 4 p = alin (1)w(l)v(1) +p@, fori=1,2,3.

Multiplying (47) by p}i)a(“‘l)a(i*?), and cyclically summing over i = 1, 2, 3 results in

ZQ(J)Zn(Zp w()u()—l—Zp(zw()Za p=_C.

J#i

where ( = ZZ 1p§f)w[()z)p( i) Z al) 4 Z 1w(z)n() (@) Z a(J . Finally, using
(46) results in

» ‘ @ _ 5
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