
Simulation of wave propagation along fluid-filled cracks using high-order1

summation-by-parts operators and implicit-explicit time stepping

⇤2

OSSIAN OREILLY§† , ERIC M. DUNHAM†‡ , AND JAN NORDSTRÖM §3

Abstract. We present an e�cient, implicit-explicit numerical method for wave propagation in4
solids containing fluid-filled cracks, motivated by applications in geophysical imaging of fractured5
oil/gas reservoirs and aquifers, volcanology, and mechanical engineering. We couple the elastic wave6
equation in the solid to an approximation of the linearized, compressible Navier-Stokes equations7
in curved and possibly branching cracks. The approximate fluid model, similar to the widely used8
lubrication model but accounting for fluid inertia and compressibility, exploits the narrowness of the9
crack relative to wavelengths of interest. The governing equations are spatially discretized using10
high-order summation-by-parts finite di↵erence operators and the fluid-solid coupling conditions are11
weakly enforced, leading to a provably stable scheme.12

Sti↵ness of the semi-discrete equations can arise from the enforcement of coupling conditions,13
fluid compressibility, and di↵usion operators required to capture viscous boundary layers near the14
crack walls. An implicit-explicit Runge-Kutta scheme is used for time stepping and the entire system15
of equations can be advanced in time with high-order accuracy using the maximum stable time16
step determined solely by the standard CFL restriction for wave propagation, irrespective of the17
crack geometry and fluid viscosity. The fluid approximation leads to a sparse block structure for18
the implicit system, such that the additional computational cost of the fluid is small relative to19
the explicit elastic update. Convergence tests verify high-order accuracy; additional simulations20
demonstrate applicability of the method to studies of wave propagation in and around branching21
hydraulic fractures.22

Key words. Fluid-filled crack, wave propagation, summation-by-parts, high-order accuracy,23
implicit-explicit.24

AMS subject classifications.25

1. Introduction. There is considerable interest in wave propagation in solids26

containing fluid-filled cracks. Hydrocarbon reservoirs, enhanced geothermal systems,27

and groundwater aquifers all feature fractured rock masses saturated in fluid. Frac-28

tures, or cracks, in these systems are either naturally occurring or created in hydraulic29

fracturing treatments, and can be as narrow as ⇠0.1–10 mm but with lengths exceed-30

ing ⇠100 m. Similarly high-aspect ratio cracks occur at a much larger scale in the31

form of magma-filled cracks known as dikes and sills, a primary component of active32

volcanic systems, and water-filled crevasses and basal hydraulic fractures in ice sheets33

and glaciers. Seismic imaging of these systems provides key constraints on the crack34

geometry and mechanical properties of the fluids and solids.35

Simulation of wave propagation in and around fluid-filled cracks presents several36

computational challenges. Many of these arise from the extreme narrowness of the37

crack relative to wavelengths of interest; the dimensionless ratio of these two length38

scales is typically ⇠10�3 or even less. Direct solution of the elastic wave equation in39

the solid and linearized compressible Navier-Stokes equation in the fluid, using finite40

di↵erence, finite element, or discontinuous Galerkin methods, would involve either41

distorted meshes or very fine grid spacings that might lead to overly restrictive sta-42
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bility constraints for explicit time stepping and/or poorly conditioned linear systems43

for implicit time integration of viscous terms. Some studies have taken this direct44

approach, most commonly by neglecting fluid viscosity and instead using the acoustic45

wave equation for the fluid [32, 16, 47, 31]. Boundary element and boundary integral46

methods [10, 39, 48] or even hybrid boundary element / finite di↵erence methods [6]47

overcome many of these issues, but are thus far restricted to inviscid fluids. Viscosity48

was added recently in two-dimensional finite element models by Frehner and Schmal-49

holz [14], who solved the full linearized Navier-Stokes equation for the fluid using an50

unstructured mesh and a fully implicit Newmark time-stepping scheme. While a fully51

implicit time-stepping scheme is feasible for two-dimensional problems of moderate52

size, it likely becomes impractical or at least highly ine�cient for three-dimensional53

problems. Nevertheless, their work demonstrates the key role that viscosity plays in54

damping waves.55

Others have taken advantage of the narrowness of the crack by utilizing approxi-56

mate fluid models. In these models, the crack, from the perspective of the solid, is an57

infinitesimally thin interface. Along this interface, a lower-dimensional set of partial58

di↵erential equations (PDE) or even local relations between tractions and displace-59

ment discontinuities are used to describe the fluid response. The local relations can60

be as simple as traction-free interface conditions [31] though more widely adopted is61

the linear slip model [9]. While local relations can be incorporated into explicit elastic62

wave propagation codes [9, 47, 31] with relative ease, they fail to capture a fundamen-63

tal type of guided wave that propagates along fluid-filled cracks. This wave, known as64

a Krauklis wave [24, 13, 21], has generated considerable interest in volcanology [13]65

and the oil and gas industry [21] because Krauklis wave resonance can be used to66

deduce crack geometry and properties of the fluid within the crack [27, 26].67

Studies focusing on Krauklis waves have therefore utilized PDE fluid models [8,68

7], though viscosity is typically neglected or captured by the assumption of fully69

developed (Poiseuille) flow. However, at the frequencies of interest, viscous dissipation70

can neither be ignored nor properly described by Poiseuille flow, as it reaches its71

maximum within boundary layers near the crack walls.72

In this work, we present a numerical scheme that combines fully explicit time73

stepping of the elastic wave equation and a PDE fluid model based on a lubrication-74

type approximation to the linearized compressible Navier-Stokes equations. We use75

high-order summation-by-parts (SBP) finite di↵erence operators [25, 42, 35, 44] for76

spatial discretization. The fluid-solid coupling conditions are weakly enforced us-77

ing the simultaneous-approximation-term (SAT) penalty technique [5], and geometric78

complexity is handled with curvilinear, multiblock grids.79

We identify several sources of sti↵ness in the semi-discrete problem, arising from80

compressibility and viscosity of the fluid. This sti↵ness is isolated by partitioning the81

semi-discrete equations, and advancing the partitioned system in time with a high-82

order implicit-explicit (IMEX) Runge-Kutta method [1, 4, 20, 36]. Similar partitioning83

has been exploited in related fluid-structure interaction simulations [38, 12, 29, 17, 19,84

46, 15]. A major advantage of our approximate fluid model, over the full linearized85

Navier-Stokes equations, is that the linear system arising in the implicit component86

of the time-stepping scheme has a sparse block diagonal structure. This substantially87

enhances computational e�ciency.88

This paper is structured as follows. In Section 2 we describe the overall problem,89

with focus in 2.1 and 2.2 on the solid and fluid equations. These are combined, in 2.3,90

through the fluid-solid coupling conditions. These conditions are incorporated into a91

variational formulation of the continuous problem with a weak enforcement of coupling92
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conditions. We establish well-posedness by deriving an energy estimate. In Section93

3 we present the semi-discrete approximation and establish stability by deriving a94

discrete energy estimate. In Section 4 we present the fully discrete approximation95

by discretizing in time using a high-order IMEX Runge-Kutta method. Section 596

demonstrates high-order convergence of the method using the method of manufactured97

solutions, followed by two application problems illustrating wave propagation in and98

around a branching fluid-filled crack. In Section 6 we provide a summary of the results99

and perspectives on future work.100

2. Continuous problem. In this section we introduce the governing equations101

for the solid and fluid, along with conditions for coupling the solid and fluid across the102

moving crack walls. We restrict attention to the two-dimensional problem, as shown103

in Figure 1. The solid occupies the domain ⌦
s

and contains a crack, which is treated104

from the perspective of the solid as an infinitesimally thin interface � ✓ ⌦
s

. The105

crack contains a compressible, viscous fluid defined on the domain ⌦
f

. Rather than106

solving the compressible Navier-Stokes equations in their most general form, we seek a107

linearized description of the fluid, assuming small perturbations about a state of rest.108

Furthermore, we utilize a lubrication-type approximation to take advantage of the109

fact that the crack width is much smaller than wavelengths of interest; however, we110

retain essential terms in the linearized Navier-Stokes equations that account for fluid111

compressibility and inertia. Our model generalizes the model of [27] to account for112

crack curvature and nonplanarity of the crack walls. Similar compressible lubrication113

models are used in engineering, particularly for problems involving gas-filled bearings114

and in studies of liquid droplet impact on surfaces [45, 41, 3, 18, 2].115

2.1. Solid. Assuming linear elastic material response and small strains and ro-116

tations, the solid is governed by the elastic wave equation:117

⇢
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=
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=


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�
,122

123

v(x, y, t) = [v
x

v
y

]T is the particle velocity, �(x, y, t) = [�
xx

�
yy

�
xy

]T is the stress, ⇢
s

124

is the density, and S = ST > 0 2 R3⇥3 is the compliance matrix. Note that the x and125

y subscripts denote the components of the solid velocity and stress and should not be126

confused with partial derivatives. For an isotropic solid, as used in all simulations in127

this work, the compliance matrix is128

S =
G

2

2

4
1� ⌫ 0 �⌫
0 2 0
�⌫ 0 1� ⌫

3

5 ,129

130

where G > 0 is the shear modulus and �1 < ⌫ < 0.5 is Poisson’s ratio. However, the131

numerical scheme developed below is applicable to anisotropic linear elastic solids as132

well.133

Curvature of the crack and possibly other geometric complexities in the shape134

of the solid are handled by formulating the elastic wave equation in curvilinear co-135

ordinates. We also utilize a particular splitting of the equations that facilitates the136
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(a) Solid grids

(b) Fluid grid

Fig. 1. (a) Linear elastic solid ⌦s containing a fluid-filled crack, appearing from the perspective
of the solid as an infinitesimally thin interface �. ŝ and n̂ denote unit vectors parallel and normal
to �, with n̂ pointing from the � side to + side of �. (b) Zoomed-in view of the fluid domain ⌦f

within the crack, along with the mesh used to resolve viscous boundary layers near the crack walls.
The arc length along the crack is s and the distance across the crack width, normal to s, is n.

construction of the semi-discrete approximation in a manner that leads to an energy137

estimate and thus stability [33]. Consider the curvilinear coordinate transformation138

x = x(q, r), y = y(q, r) $ q = q(x, y), r = r(x, y), mapping (x, y) 2 ⌦
s

to (q, r) 2 e⌦
s

.139

We assume a smooth, one-to-one mapping, and define e⌦
s

= [0, 1] ⇥ [0, 1] as the ref-140

erence unit square. Following [11], we transform the elastic wave equation by writing141

(1) in conservative form and (2) in non-conservative form [28], which leads to142

⇢
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147

In (4), the metric coe�cients q
x

, q
y

, . . ., are obtained by taking partial derivatives148

of each coordinate. For example, q
x

= @q/@x. The metric coe�cients are the only149
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quantities which use compact derivative notation, and should not be confused with150

the x and y components of a vector. Furthermore, J > 0 is the Jacobian of the151

mapping, defined as J = x
q

y
r

� y
q

x
r

. The metric coe�cients satisfy the metric152

relations Jq
x

= y
r

, Jr
x

= �y
q

, Jq
y

= �x
r

, Jr
y

= x
q

.153

The coupling conditions will be stated using the solid fields locally oriented with154

respect to the curved fluid-solid interface. We therefore define the velocity V and155

traction T expressed in terms of the normal and tangential components given by the156

unit normal n̂ and unit tangent ŝ along � (Figure 1a). We have157

V = [v
n

v
s

]T = RT v and T = [�
n

�
s

]T = RT

A
r

|rr|�,(5)158
159

where v
n

and v
s

are the normal and tangential components of the solid particle ve-160

locity, respectively, and �
n

and �
s

are the normal and shear components of the solid161

traction, respectively. To obtain these components, we have introduced the rotation162

matrix R:163

RT =


n̂T

ŝT

�
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1
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r
y
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x

�
,(6)164

165

where |rr| = (r2
x

+ r2
y

)1/2.166

2.2. Fluid. The fluid is governed by an approximation to the linearized com-167

pressible Navier-Stokes equations. It has density ⇢
f

, dynamic viscosity µ, and bulk168

modulus K
f

. The fluid equations are stated in a coordinate system (s, n) locally169

oriented with respect to �, for which s is the arc length along � and n measures the170

distance across the width of the crack in the direction normal to s. The upper and171

lower crack walls are initially located at n = w±
0 (s) (Figure 1b), but are perturbed to172

n = w±(s, t). The initial width of the crack is defined as w0 = w+
0 (s)� w�

0 (s).173

Following the usual procedure for deriving lubrication-type approximations [41,174

3, 18], a scaling analysis of the momentum balance in the n-direction establishes175

uniformity of the fluid pressure across the width of the crack. Conservation of fluid176

mass, together with a barotropic equation of state, leads to the first governing equation177

for the fluid. The linearized version of this equation is, on �,178

w0

K
f
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@t
+

@
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✓
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◆
,(7)179

180

for pressure p(s, t) and width-averaged velocity181

ū(s, t) =
1

w0

Z
w

+
0

w

�
0

u(s, n, t)dn,(8)182

183

where u = u(s, n, t) is the fluid velocity in the s-direction. Equation (7) is derived by184

integrating the local form of the continuity equation across the crack width, using the185

kinematic condition to replace the normal component of fluid velocity with the crack186

opening rate, and linearizing about a state of rest.187

At this point, the classical lubrication model would neglect inertia by assuming a188

fully developed Poiseuille flow profile, for which189

ū =
w2

0

12µ

✓
�@p

@s

◆
+

v+
s

� v�
s

2
(9)190

191
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where v+
s

�v�
s

is the discontinuity in the tangential component of solid particle velocity192

across �. However, at the frequencies of interest to us, fluid inertia leads to non-193

parabolic velocity profiles with Stokes-type boundary layers adjacent to the crack194

walls [3]. To obtain a physically relevant ū we must therefore solve the s-momentum195

balance on the two-dimensional domain ⌦
f

:196

⇢
f

@u

@t
+

@p

@s
=

@⌧

@n
,(10)197

198

where199

⌧ = µ
@u

@n
.(11)200

201

is the shear stress. Equation (10) retains, on the right-hand side, a single viscous term202

describing shearing on planes parallel to � and di↵usive momentum transport across203

these planes. E↵ects of curvature have been neglected in the momentum balance,204

under the assumption that the radius of curvature of � is comparable to or larger205

than the wavelengths of interest. Note that when inertia is neglected, the solution206

to the momentum balance equation (10) with no-slip conditions on the crack walls207

provides the classical lubrication solution (9). In this classical lubrication limit, the208

associated shear stress on the top and bottom crack walls is209

⌧± = ⌥w0

2
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+
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s
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)

w0
.(12)210

211

Note that while the method developed in this paper uses the more general lubrication212

model that accounts for fluid inertia, it would be a straightforward extension to instead213

use the classical lubrication model embodied in equations (9) and (12).214

We apply a coordinate transformation in the s direction for compatibility with215

the curvilinear grid used in the solid. We also apply a coordinate transformation in216

the n direction in the fluid to resolve the boundary layers by clustering grid points217

near the walls. Consider the coordinate transformation s = s(q), n = n(q, r) $ q =218

q(s), r = r(s, n) that maps (s, n) 2 ⌦
f

to a reference unit square ⌦̃
f

= [0, 1]⇥ [0, 1].219

Note that since s is the arc length of �, it can only depend on q. The Jacobian and220

metric relations become J = s
q

n
r

, s
r

= 0, Jq
s

= n
r

, Jr
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= �n
q

, Jq
n

= 0, Jr
n

= s
q

.221

Transforming (7), (8), (10), and (11) leads to the final governing equations for the222

fluid:223
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(13)224

225

2.3. Fluid-solid coupling conditions and well-posedness. Having made226

several approximations, we must verify that our problem is well-posed. Well-posedness227

is established by enforcing the fluid-solid coupling conditions such that the governing228

equations satisfy a mechanical energy balance. In this analysis, we weakly enforce229
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the coupling conditions. This procedure simplifies the proof of stability in the semi-230

discrete case, following later.231

For simplicity, we consider only the + side of the interface �; the � side is treated232

in an analogous manner, and boundary conditions on the solid have been discussed233

extensively in previous work [22, 23, 11]. Since the fluid mass balance is stated on �,234

we only consider the term @w+/@t in (13), which will be coupled to the solid on the235

+ side. To simplify the notation in this section, we drop the + superscript.236

The fluid-solid coupling conditions for a viscous fluid are obtained by balancing237

the tractions across the interface and enforcing the kinematic condition and no-slip238

condition to ensure that the fluid and solid remain in contact at the crack walls:239

V = [v
n

v
s

]T =


@w

@t
u

�
T

and T = [�
n

�
s

]T = [�p ⌧ ]T .(14)240
241

The negative sign on fluid pressure arises because pressure is positive in compression,242

the opposite of the sign convention for solid normal stresses.243

There are many ways in which the coupling conditions (14) can be enforced. One244

approach is to weakly enforce a common interface velocity V̂ = [V̂
n

V̂
s

]T on the fluid245

and solid velocities, and a common interface traction T̂ = [T̂
n

T̂
s

]T on the fluid and246

solid tractions. This procedure uses the fact that the fluid velocities, solid velocities,247

and tractions are continuous. The interface velocity and traction are determined248

by satisfying the proper mechanical energy balance of the overall problem. In the249

limit when the coupling conditions become strongly enforced, the fluid and solid250

velocities and tractions should be equal to the interface velocity and traction, i.e.,251

V̂ = [v
n

v
s

]T = [@w/@t u]T and T̂ = [�
n

�
s

]T = [�p ⌧ ]T .252

Since our governing equations are formulated in curvilinear coordinates, we state253

all integrations with area and length di↵erentials in the curved domain. The rela-254

tionship between the area di↵erential in the curved domain and transformed domain255

is d⌦ $ Jdqdr. Furthermore, the relationship between the line di↵erential for the256

interface � in the curved domain and transformed domain is ds $ J |rr|dq.257

To obtain the mechanical energy balance satisfied by the fluid and solid, we258

consider the following variational form of the solid:259
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(15)

260

261

for smooth, vector-valued test functions �
s

,'
s

2 L2(⌦
s

). In (15), the integrals along262

the interface � are penalty terms, which weakly enforce the coupling conditions. The263

rotation matrix R is defined in (6) and arises because the coupling conditions are264

stated in terms of normal and tangential components. One can derive the penalty265

terms by applying integration by parts to the corresponding volume terms. Another266

possibility is to introduce an unknown weight ⌃ in the penalty term and then deter-267

mine this weight by satisfying the energy balance [34].268
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The fluid variational formulation is269
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(ūw0)ds = �

Z

�
�
f

@w

@t
ds

Z

⌦f

'
f

⇢
f

@u

@t
+ '

f

q
s

@p

@q
d⌦ =

Z
r
n

'
f

@⌧

@r
d⌦

�
Z

�
'
f

(⌧ � T̂
s

) + µr
n

@'
f

@r
(u� V̂

s

)ds,

(16)270

271

for smooth, scalar test functions �
f

2 L2(�) and '
f

2 L2(⌦
f

).272

Next, we determine V̂ and T̂ such that the overall problem satisfies the proper273

mechanical energy balance. The choice of V̂ and T̂ resulting in well-posedness is274

specified in the following proposition.275

Proposition 1. The fluid-solid problem (15) and (16) is well-posed and consis-276

tent with the coupling conditions (14) if V̂ and T̂ are chosen as the linear combinations277
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In (1), � =
R
⌦f

⌧2/µd⌦ � 0 is the viscous energy dissipation rate and, E is the285

mechanical energy286
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where the respective terms are the kinetic and strain energy in the solid, and the289

elastic and kinetic energy in the fluid.290

Next, we add and subtract T̂
n

V̂
n

and T̂
s

V̂
s

to the right-hand side of (1), which291

after some algebra leads to292

dE

dt
+ � = �

Z

�
T̂
n

V̂
n

+ T̂
s

V̂
s

� (�
n

� T̂
n

)(v
n

� V̂
n

)� (�
s

� T̂
s

)(v
s

� V̂
s

)ds

�
Z

�
p
@w

@t
� T̂

s

V̂
s

+ (u� V̂
s

)(⌧ � T̂
s

)ds.

= �(P +R),

(19)293

294
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where295

P =

Z

�
T̂
n

V̂
n

+ p
@w

@t
ds,(20)296

R =

Z

�
(u� V̂

s

)(⌧ � T̂
s

)� (�
n

� T̂
n

)(v
n

� V̂
n

)� (�
s

� T̂
s

)(v
s

� V̂
s

)ds.(21)297
298

In (19), we have partitioned the right-hand side into two terms: P and R. The first299

term P contains the flow of energy from the fluid to the solid and vice versa. When300

the coupling conditions are enforced, this term must vanish. The second term R is a301

residual term arising due to the weak enforcement of the coupling conditions. This302

term needs to be non-negative and to vanish when the coupling conditions are exactly303

satisfied. To obtain a well-posed problem, we therefore need to choose V̂ and T̂ such304

that P = 0 and R � 0. By choosing305

T̂
n

= �p and V̂
n

=
@w

@t
,(22)306

307

we obtain P = 0. To bound R, consider the choice308

�
n

� T̂
n

= �↵
n

(v
n

� V̂
n

), �
s

� T̂
s

= �↵
s

(v
s

� V̂
s

), ⌧ � T̂
s

= �
s

(u� V̂
s

),(23)309310

for penalty parameters ↵
n

,↵
s

,�
f

� 0. Guidelines for choosing these penalty param-311

eters are given later. Then (21) becomes312

R =

Z

�
↵
n

(v
n

� V̂
n

)2 + ↵
n

(v
s

� V̂
s

)2 + �
s

(u� V̂
s

)2 � 0.313
314

By inserting (22) and (23) into (19), we obtain the bound315

dE

dt
= ���R  0.316

317

Note that R vanishes when the coupling conditions are satisfied exactly, and the318

energy balance in this limit exactly coincides with the correct mechanical energy319

balance (i.e., dE/dt = ��  0).320

When implementing this scheme, we need to determine V̂ and T̂ . This is done321

by solving (22) and (23) for V̂ and T̂ , which yields the stated solution (17). Finally,322

to show that (17) is consistent with (14), insert (17) into the variational formulations323

(15) and (16).324

3. Semi-discrete approximation. In this section, we utilize the results estab-325

lished in the previous section to construct a stable, semi-discrete approximation. We326

closely follow the continuous analysis by formulating the semi-discrete approximation327

in variational form. This will be done by using SBP operators, which are necessary328

for obtaining a discrete energy estimate and hence a proof of stability.329

3.1. Definitions. While a multiblock discretization is used for both the fluid330

and solid domains in realistic applications, we keep the presentation brief by focusing331

on only one solid and one fluid block. The solid block is located above the crack, as332

illustrated in Figure 1a. Let the reference domain ⌦̂ = [0, 1] ⇥ [0, 1] be discretized333

by an (N
q

+1)⇥ (N
r

+1) two-dimensional grid. Furthermore, let the two coordinate334

directions q and r in the reference domain be discretized by q
i

= i�q for 0  i  N
q

,335

and r
j

= j�r for 0  j  N
r

using grid spacings �q = 1/N
q

and �r = 1/N
r

. For336
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10 OSSIAN O’REILLY, ERIC M. DUNHAM, JAN NORDSTRÖM

each field, we introduce a grid function u
ij

(t) = u(q
i

, r
j

, t), which is stored in a vector337

u(t) with r being the contiguous direction. The storage order of u
ij

is, of course,338

arbitrary, but our particular choice facilitates organization and presentation through339

use of Kronecker tensor product notation.340

Having introduced grids and grid functions, next we define SBP operators. An341

SBP first derivative di↵erence operator is given in Definition 1; its properties are342

satisfied by construction.343

Definition 1. The di↵erence operator D is a summation-by-parts first derivative344

SBP(2s,s) with interior accuracy 2s and boundary accuracy s with following properties.345

1. The diagonal matrix H > 0 defines the discrete norm346

k�k2
h

= �TH�, k�k2
h

⇡ k�k2 =

Z 1

0
�2dx,(24)347

348

for a smooth test function � and a corresponding grid function �.349

2. The SBP property350

HD +DTH = B = diag([�1 0 . . . 1])(25)351352

holds. Here, B is the restriction of � to the right and left boundary:353

�TB� = �2
N

� �2
0.354355

For more details concerning accuracy relations, see [42, ?].356

3.2. Solid. By using the definition of the SBP di↵erence operator, we discretize357

the variational formulation of the solid (15):358

�T

s

(I2 ⌦ ⇢M
s

)
dv

dt
= �T

s

(I2 ⌦M
s

J�1)
�
(I2 ⌦D

q

⌦ I
r

)(I2 ⌦ J)A
q

+ (I2 ⌦ I
q

⌦D
r

)(I2 ⌦ J)A
r

�
� + (RTLT

s

�
s

)T (I2 ⌦ M̄
s

)(T � T̂ ),

'T

s

S(I3 ⌦M
s

)
d�

dt
= 'T

s

(I3 ⌦M
s

)
�
AT

q

(I3 ⌦D
q

⌦ I
r

) +AT

r

(I3 ⌦ I
q

⌦D
r

)
�
v

+ (I2 ⌦ |rr|�1RTL
s

A
r

'
s

)T (I2 ⌦ M̄
s

)(V � V̂ ).

(26)

359

360

In (26), all of the material properties, Jacobian, and metric coe�cients, evaluated361

at each grid point, are stored in diagonal matrices. The matrix I2 is a 2 ⇥ 2 iden-362

tity matrix, and ⌦ is the Kronecker product. The di↵erence operators D
q

and D
r

363

are SBP finite di↵erence operators (see Definition 1). The matrices A
q

and A
r

are364

block diagonal matrices containing the metric coe�cients (approximated using SBP365

operators). In the penalty terms, the operator L
s

is used to obtain the velocity V366

and traction T on the interface. For example, we compute V using V = RTLT

s

v,367

where L
s

= I2 ⌦ I
q

⌦ e0, and e0 = [1 0 . . . 0]T . The rotation matrix R is defined368

using (6). The interface velocity V̂ and traction T̂ , given in (17), are determined in369

a similar manner. The mass matrices M
s

and M̄
s

are diagonal matrices obtained by370

approximating integrals over ⌦
s

and along �, respectively, using the SBP quadrature371

rules given in Definition 1. We have M
s

= J(H
q

⌦H
r

) and M̄
s

= LTJ |rr|LH
q

.372

Since the variational formulation holds for all non-trivial test functions, we obtain373

the strong formulation of the semi-discrete approximation of the solid by eliminating374

the test functions in (26) and inverting the matrices on the left-hand side. Note that375

the strong form of the equations (26) can be directly advanced in time using explicit376

time stepping since the mass matrices are diagonal and the inverse of S is known.377
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3.3. Fluid. Many of the definitions needed to formulate the semi-discrete ap-378

proximation of the solid equations are also used to formulate the semi-discrete ap-379

proximation of the fluid equations. One di↵erence, however, is the appearance of the380

second derivative operator in the viscous di↵usion term. While the second derivative381

can be constructed by applying the first derivative twice, this procedure leads to a382

di↵erence operator with sub-optimal stencil width and accuracy. Therefore, in our im-383

plementation, we use a compact second derivative operator with variable coe�cients384

[30]. However, since the presentation and proof of stability become more complicated385

when using compact operators, in the derivation below we use the first derivative386

applied twice.387

The discretization of the weak form of the fluid governing equations (16) is388

�T

f

M̄
f

✓
w0K

�1
f

dp

dt
+ q

s

D
q

ūw0

◆
= ��T

f

M̄
f

@w

@t

'T

f

M
f

✓
⇢
f

du

dt
+ (q

s

D
q

p)⌦ e
r

◆
= 'T

f

M
f

r
n

(I
q

⌦D
r

)⌧ � (LT

f

'
f

)T M̄
f

(LT

f

⌧ � T̂
s

)

� (LT

f

(I
q

⌦D
r

)'
f

)T M̄
f

r
n

⇣
LT

f

u� V̂
s

⌘
.

(27)

389

390

In (27), the shear stress ⌧ is determined by391

⌧ = µn
r

(I
q

⌦D
r

)u.(28)392393

The width-averaged velocity ū is computed using the SBP quadrature rule:394

ū = (w0 ⌦ eT
r

H
r

)n
r

u ⇡ 1

w0

Z
r=1

r=0
un

r

dr,(29)395
396

where e
r

= [1 1 . . . 1]T . We approximate volume integrals over ⌦
f

and surface397

integrals along � using M
f

= (s
q

H
q

⌦ H
r

)n
r

and M̄
f

= H
q

s
q

, respectively. Since398

the quadrature rules along the interface on the fluid and solid sides are constructed399

in the same way, we define M̄ = M̄
f

= M̄
s

. Note that the quadrature rule H
r

, used400

to calculate ū, is the same as the one constructing M
f

. This is required to obtain an401

energy balance for the semi-discrete approximation.402

3.4. Stability. Finally, we show that the semi-discrete approximation is stable403

through the following proposition.404

Proposition 2. The fluid-solid semi-discrete approximation given by (26) and405

(27) is stable.406

Proof. The results follow from Proposition 1 and use of the SBP property (25).407

The energy (18) is approximated as408

E
h

=
1

2
vT (I2 ⌦ ⇢

s

M
s

)v +
1

2
�TS(I3 ⌦M

s

)� +
1

2
pTw0K

�1M̄
f

p+
1

2
uT ⇢

f

M
f

u.409
410

The semi-discrete approximations (26) and (27) satisfy411

dE
h

dt
+ �

h

= �↵
n

(v
n

� V̂
n

)T M̄(v
n

� V̂
n

)� ↵
s

(v
s

� V̂
s

)T M̄(v
s

� V̂
s

)

� �
s

(u� V̂
s

)T M̄(u� V̂
s

)  0.
412

413
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12 OSSIAN O’REILLY, ERIC M. DUNHAM, JAN NORDSTRÖM

Here, �
h

= ⌧TM
f

⌧/µ � 0 approximates the viscous energy dissipation rate. Since414

the energy rate of the semi-discrete approximation is non-positive, the numerical415

solution is bounded, implying stability. The terms arising from the weak enforcement416

of the coupling conditions yield additional numerical dissipation, vanishing with grid417

refinement.418

4. Fully discrete approximation. Next we turn our attention to time step-419

ping. While the overall problem is dominantly one of wave propagation, there are420

several sources of sti↵ness. Our objective here is to advance the solution in time,421

with high-order accuracy, using a fully explicit method for the elastic wave equation422

(anticipating that this will dominate the computational expense) and with a time step423

limited only by the usual CFL condition for wave propagation. To overcome sti↵ness,424

we formulate the fully discrete scheme by first partitioning the semi-discrete approxi-425

mation into sti↵ and non-sti↵ parts. The latter accounts for all terms in the governing426

equations describing wave propagation in the solid and fluid. Then we advance the427

partitioned system in time using a high-order implicit-explicit (IMEX) Runge-Kutta428

method [1, 4, ?, 20]. The sti↵ and non-sti↵ terms are integrated implicitly and ex-429

plicitly in time, respectively.430

The semi-discrete approximations (26) and (27) are written in matrix-vector form431

as432

dq

dt
= Wq + Cq + g(t), q =


q
f

q
s

�
, W =


W

f

0
0 W

s

�
, C =


C

f

C
fs

C
sf

C
s

�
,(30)433

434

where q
f

= [pT , uT ]T and q
s

= [vT , �T ]T . In (30), the matrix W holds the di↵erence435

operators and boundary terms of the fluid and solid, C holds the fluid-solid coupling436

terms, and g(t) is a forcing function containing external data. We partition (30) into437

dq

dt
= F IMq + FEXq + g(t),(31)438

439

where440

F IM =


W IM

f

+ C
f

C
fs

0 0

�
, FEX =


WEX

f

0
C

sf

M
s

+ C
s

�
(32)441

442

will be treated implicitly and explicitly, respectively. The partitioning of W
f

treats443

di↵usion (contained in W IM

f

) implicitly and wave propagation (contained in WEX

f

)444

explicitly. In this work we apply the time integrator ARK4(3)6L[2]SA-ESDIRK (im-445

plicit component) and ARK4(3)6L[2]SA-ERK (explicit component) presented in [20].446

For future reference, we shall refer to this scheme as ARK4.447

4.1. Choice of penalty parameters. The sti↵ness of the partitioned, fully448

discrete scheme (32) is influenced by the penalty parameters ↵
n

, ↵
s

, and �
s

appearing449

in Proposition 1. We explain how to choose the parameters such that the maximum450

stable time step is set by the usual CFL condition for wave propagation.451

To determine the maximum stable time step, we compute the spectral radius452

of the IMEX stability function given in [4]. This function is the iteration matrix453

bR(FEX , F IM ) of the fully discrete approximation454

qk+1 = bRqk,(33)455456

with g(t) = 0 in (32). In (33), qk denotes the numerical solution at time t
k

= k�t457

for k = 0, 1, 2, . . ., and �t is the time step. If the spectral radius ⇢( bR) > 1, then458
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the approximation is not stable. The maximum stable time step is then defined as459

max�t s.t. ⇢( bR)  1 and bR is diagonalizable.460

As in our previous work [22, 23, 11], the solid penalty parameters ↵
n

and ↵
s

are461

chosen to match the compressional and shear wave impedances, respectively:462

↵
n

= Z
p

= ⇢
s

c
p

and ↵
s

= Z
s

= ⇢
s

c
s

,(34)463464

where c
p

=
p
M/⇢

s

is the compressional wave speed, withM = 2G(1�⌫)/(1�2⌫), and465

c
s

=
p

G/⇢
s

is the shear wave speed. We refer to this choice of penalty parameters as466

the characteristic choice because ↵
s

and ↵
n

can be obtained by solving the Riemann467

problem of the elastic wave equation.468

The fluid penalty parameter �
s

is determined by minimizing the spectral radius469

of the semi-discrete approximation of a one-dimensional model problem describing470

plane shear waves normally incident on a layer of viscous fluid. Thus, we consider the471

coupling of the shear wave equation to the di↵usion equation in one dimension:472

Z
�
s

⇢
s

@v
x

@t
dy =

Z
�
s

@�
xy

@y
dy +

h
�
s

⇣↵
s

(�
xy

� ⌧)

↵
s

+ �
s

� ↵
s

�
s

↵
s

+ �
s

(v
x

� u)
⌘i

y=0+
,

Z
'
s

1

G

@�
xy

@t
dy =

Z
'
s

@v
x

@y
dy +

h
�
s

⇣�
s

(v
x

� u)

↵
s

+ �
s

� �
xy

� ⌧

↵
s

+ �
s

⌘i

y=0+
,

Z
�
f

⇢
f

@u

@t
dn =

Z
�
f

⌧dn�
h
�
f

⇣�
s

(⌧ � �
xy

)

↵
s

+ �
s

+
↵
s

�
s

↵
s

+ �
s

(u� v
x

)
⌘

+ µ
@�

f

@n

⇣↵
s

(u� v
x

)

↵
s

+ �
s

+
⌧ � �

xy

↵
s

+ �
s

⌘i

n=w

+
0

.

(35)473

474

In (35), the crack is located at y = 0 in the solid. We have weakly enforced the475

coupling conditions v
x

= u and �
xy

= ⌧ on the top crack wall (y = 0+ in the solid476

and n = w+
0 in the fluid) using Proposition 1.477

Since the penalty parameters carry units of impedance, a reasonable choice for478

�
s

would be the fluid impedance. For a time-harmonic solution in the boundary layer479

limit the fluid impedance is Z
f

(!) = (µ⇢
f

!)1/2. However, since the fluid impedance480

depends on the angular frequency !, we cannot use it directly. Instead, we estimate481

it in the following manner. Let !⇤ be a frequency of interest. Then, for accuracy,482

we constrain the fluid and solid grid spacings to be �x
f

= (µ/⇢
f

!⇤)1/2 (to resolve483

the momentum di↵usion length at this frequency) and �x
s

= c
s

/!⇤ (to resolve shear484

waves), respectively. The impedance parameter can be chosen as �
s

= Z
f

(!⇤) =485

µ/�x
f

.486

While �
s

= µ/�x
f

is a reasonable choice for many problems, it is not always487

optimal. To demonstrate this, we also investigate two alternative choices that arise488

in certain limits, specifically when the fluid impedance vanishes (�
s

= 0, as for an489

inviscid fluid) or when the fluid impedance approaches infinity (�
s

! 1). To enforce490

�
s

! 1, we analytically take the limit. Then (35) becomes491

Z
�
s

⇢
s

@v
x

@t
dy =

Z
�
s

@�
xy

@y
dy �

h
�
s

↵
s

(v
x

� u)
i

y=0+
,

Z
'
s

1

G

@�
xy

@t
dy =

Z
'
s

@v
x

@y
dy +

h
'
s

(v
x

� u)
i

y=0+
,

Z
�
f

⇢
f

@u

@t
dn =

Z
�
f

⌧dn�
h
�
f

⇣
(⌧ � �

xy

) + ↵
s

(u� v
x

)
⌘i

n=w

+
0

.

492

493
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The part of parameter space that we investigate depends on the ratio of the fluid494

impedance Z
f

(in the boundary layer limit) to solid impedance Z
s

:495

� =
Z
f

Z
s

=

p
µ!⇤⇢

f

⇢
s

c
s

=
�x

f

⇢
f

�x
s

⇢
s

.496
497

For simplicity, we restrict attention to ⇢
s

= ⇢
f

and use the SBP(6,3) operators to498

discretize (35). For each choice of �
s

, we compute the spectral radius ⇢(W + C)499

as a function of the impedance ratio � (Figure 2). Here, the W + C is matrix in500

the semi-discrete approximation of (35), which can be put in the same form as (32).501

Figure 2 shows that �
s

= 0 minimizes ⇢(W +C) for � ⌧ 1, whereas for larger values502

of �, �
s

! 1 is the optimal choice. Note that for � ⌧ 1, the spectral radius for503

�
s

= µ/�x
f

is nearly identical to that for �
s

= 0. Therefore, in our implementation,504

we never use �
s

= µ/�x
f

, because it is more complicated to implement and shows505

no benefit compared to �
s

= 0 for � ⌧ 1.506

Instead, we propose the following strategy for choosing �
s

:507

�
s

=

(
0, � < �⇤

1, � > �⇤ .(36)508

509

The parameter �⇤ is defined as the value of � at which ⇢
�
W + C(�

s

= 0)
�
= ⇢

�
W +510

C(�
s

! 1)
�
, as estimated from Figure 2. For the example shown, �⇤ ⇡ 10�1.511

10�7 10�5 10�3 10�1 101 103 105
100

101

102

103

104

�xf

�xs

S
p
e
c
t
r
a
l

r
a
d
i
u
s
⇢
(W

s

+
C

s

)�
x

s
c

s

�
s

= 0
�
s

! 1
�
s

= µ/�x
f

Fig. 2. Spectral radius ⇢(W + C) of the semi-discrete approximation of the problem (35).

Note, however, that while this choice ensures that the spectral radius of the semi-512

discrete approximation is minimized, there is no guarantee that the fully discrete513

approximation is stable for a time step set by the usual CFL condition for wave514

propagation. For example, the use of energy-conserving coupling conditions, which515

are traditionally used in many fluid-structure interaction applications, results in loss516
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of stability (see Appendix A for more details). By also analyzing the fully discrete517

approximation, we have found that when choosing the penalty parameters as (34)518

and (36), the maximum stable time step remains constant regardless of the amount519

of sti↵ness (i.e., the time step is not restricted by the width of the fluid layer or fluid520

properties). We have therefore achieved our objective of developing a fully discrete521

scheme that can be advanced with a time step determined only by wave propagation.522

5. Numerical Experiments. In this last part of the paper we investigate the523

accuracy of our numerical scheme using the method of manufactured solutions and524

showcase the code capabilities with two application problems featuring a curved,525

branching crack.526

5.1. Manufactured solutions. We construct a smooth solution and quantify527

error and convergence rate using the method of manufactured solutions [40]. Param-528

eters are chosen for which the semi-discrete equations are quite sti↵; this provides a529

comprehensive test of the partitioning and IMEX time-stepping procedure.530

(a) Solid grids (b) Crack geometry

Fig. 3. MMS verification problem. Two square blocks, ⌦1 (blue) and ⌦2 (red), are joined along
the fluid-filled crack �, which has the nonplanar geometry shown on the right.

Let the solid domain ⌦
s

be the rectangle [0, L]⇥ [�L, L] with a nominally planar531

crack � at y = 0 (see Figure 3). Since the geometry is not curved in this test, we will532

denote all fields using Cartesian coordinates x, y. The geometry is discretized using533

two elastic blocks (one on each side of the crack) with (n + 1) ⇥ (n + 1) grid points534

and a single fluid block of size (n+1)⇥ (m+1) , where n = 12⇥2j , m = 16⇥2j , and535

j = 1, 2, . . . , 5. A manufactured solution is constructed by adding forcing functions536

to the governing equations and boundaries and by exactly satisfying the coupling537

conditions (14). The manufactured solution in the fluid and the crack geometry are538

p(x, t) = sin(kx) cos(!t), u(x, y, t) = sin(kx) sin(ky) cos(!t) + sin(kx) cos(!t),(37)539

w+
0 (x) = a+ b

�
1� sin(kx)

�
sin(kx), w�

0 (x) = �a� b
�
1� sin(kx)

�
sin(kx),(38)540541
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a b ⇢
f

c0 µ ⇢
s

c
p

c
s

1 m - 0.1
mm

0.1 a 1 g/cm3 1.5 km/s 1 mPas 2 g/cm3 5 km/s 3 km/s

Table 1
Fluid and solid properties used in the MMS verification problem. The same fluid properties are

used in the branching crack problem.

n = 24 n = 48 n = 96 n = 192 n = 384
⇢(M

f

)/⇢(M
s

) 2.2⇥ 104 3.0⇥ 104 5.7⇥ 104 1.1⇥ 105 2.3⇥ 105

Table 2
Spectral radius ratio, a measure of sti↵ness for the MMS verification problem.

respectively. We prescribe the motion of the interface using542

@w+(x, t)

@t
= sin(kx) sin(!t),

@w�(x, t)

@t
= � sin(kx) sin(!t).(39)543

544

The manufactured solution in the solid is545

v
x

(x, y � 0+, t) = u(x,w+
0 , t)c(ky),

v
y

(x, y � 0+, t) = s(kx)s(!t),

�
xx

(x, y � 0+, t) = c(kx)c(ky)c(!t),

�
yy

(x, y � 0+, t) = �p(x, t)c(ky),

�
xy

(x, y � 0+, t) = ⌧(x,w+
0 , t)c(ky),

v
x

(x, y  0�, t) = u(x,w�
0 , t)c(ky),

v
y

(x, y  0�, t) = �s(kx)s(!t),

�
xx

(x, y  0�, t) = c(kx)c(ky)c(!t),

�
yy

(x, y  0�, t) = �p(x, t)c(ky),

�
xy

(x, y  0�, t) = ⌧(x,w�
0 , t)c(ky),

(40)546

547

where ⌧(x, y, t) = µ@u/@y = µks(kx)c(ky)c(!t), c(x) = cos(x), s(x) = sin(x), k =548

2⇡/L m�1 , L = 1 m, and ! = 20 s�1. For the manufactured solution to satisfy the549

governing equations of the fluid and solid, we need to add forcing functions. These550

forcing functions are obtained by inserting (37)-(40) into the governing equations. To551

conserve space, we have omitted presenting the forcing functions. Initial conditions552

are determined by evaluating (37) and (40) at t = 0. Boundary conditions are enforced553

by specifying (37) and (40) as data on the incoming characteristic variable. Additional554

parameters are listed in Table 1. After discretizing with SBP-SAT, the semi-discrete555

approximation becomes sti↵ (Table 2).556

The numerical error e(nj) = u(nj)�u⇤ is defined as the di↵erence of the numerical557

solution u(nj), and the exact solution u⇤ sampled at the grid points of the jth grid558

and computed using (37) and (40). The convergence rate is559

rate = log2

✓
ke(nj)k

h

ke(nj+1)k
h

◆
,560

561

where ke(nj)k
h

is the norm of the error, in the energy norm on the jth grid. Time562

integration is carried out using ARK4 to the final time t = 0.16 s with a time step�t =563

h/c
p

, where h is the grid spacing in the solid. We test using the SBP(6,3) operators.564

Table 3 shows that the scheme is 4th-order accurate, confirming the expected order565

of accuracy [43].566

5.2. Branching cracks at a material interface. Next we present two ap-567

plication problems featuring a curvilinear crack branching into two additional crack568
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n = 24 n = 48 n = 96 n = 192 n = 384

w0 = 1 m
log10 error 0.04 �1.13 �2.75 �4.27 �5.64

rate 3.90 5.37 5.05 4.56

w0 = 0.1 m
log10 error �0.55 �1.83 �3.13 �4.42 �5.73

rate 4.27 4.31 4.30 4.35

w0 = 1 cm
log10 error �0.63 �1.87 �3.13 �4.42 �5.73

rate 4.11 4.21 4.29 4.35

w0 = 1 mm
log10 error �0.63 �1.87 �3.13 �4.42 �5.73

rate 4.11 4.21 4.29 4.35

w0 = 0.1 mm
log10 error �0.63 �1.87 �3.13 �4.42 �5.73

rate 4.12 4.21 4.29 4.34

Table 3
Errors and convergence rates for the MMS verification problem.

⇢
s

G ⌫ c
p

c
s

⌦1 2.4 g/cm3 10 GPa 0.3 3800 m/s 2000 m/s
⌦2 2.4 g/cm3 20 GPa 0.3 5400 m/s 2800 m/s

Table 4
Solid material properties for ⌦1 and ⌦2 in the branching crack problem. Compressional and

shear wave speeds cp and cs have been computed from the density ⇢s, shear modulus G, and Poisson’s
ratio ⌫.

segments along a material interface. This geometry can arise in many natural and569

engineered systems (volcanoes, oil and gas reservoirs, and glaciers) due to hydraulic570

fracturing of material ⌦1. Continued influx of fluid causes the crack to grow through571

⌦1 until it encounters a sti↵er material ⌦2. The crack then branches by exploiting572

joints (pre-existing fractures) along the material interface. Figure 4 shows the setup.573

The fluid-filled crack is represented by 5 piecewise smooth and connected segments574

�
i

(see Appendix 2 for coupling conditions at the crack junction). The main crack575

is 5 mm wide and the branches are 1 mm wide at the junction and 0.01 mm wide at576

the crack tips. The fluid and solid material properties are listed in Tables 1 and 4,577

respectively.578

The computational domain is discretized using a multiblock grid (Figure 4).579

Boundary- and interface-conforming structured grids are generated using cubic B-580

splines and transfinite interpolation. The Jacobian and metric coe�cients for each581

grid are computed using the SBP(6,3) first derivative operators. While the Jacobian582

is smooth inside each block, it is discontinuous across the interfaces.583

We use the SBP(6,3) finite di↵erence operators and qualitatively assess grid con-584

vergence by performing several levels of grid refinement. To advance the solution in585

time, we use ARK4 with a time step �t = 0.7 ⇥ h
min

/c
max

, where c
max

= c
(2)
p

and586

h
min

is the minimum grid spacing in the solid. On the coarse grid, the minimum587

grid spacing in the solid is h
min

= 1.9 mm and in the fluid (in the n direction) it588

is h
min

= 62.5 nm. With a fully explicit time stepping scheme we estimate that we589

would need to reduce the time step by at least two orders of magnitude.590

Below we present results for the two problems. Both have exactly the same591

geometry, mesh, material properties, and boundary conditions; they di↵er only in592

how waves are excited. In both problems, the fluid and solid are initially at rest,593

except as indicated.594
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(a) Unstructured multiblock grid.

10 m

(b) Zoom-in.

Fig. 4. Geometry of branching crack problem. A fluid-filled crack � cuts through the solid ⌦1

(blue) before branching, at the interface with a sti↵er solid ⌦2 (red), into two crack segments along
the material interface.

 0

-40

-20

 20

 40

μm/s10 m

(a) t = 26 ms.

 0

-40

-20

 20

 40

μm/s10 m

(b) t = 50 ms.

Fig. 5. Snapshots in time of Krauklis waves propagating along a fluid-filled crack (solid line);
color shows velocity in x direction. The discontinuity in color indicates opening/closing motions of
the crack. 241⇥ 241 grid points per block.
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5 m

1m
m

5 mm
1m

m

-2.5 0 2.5 cm/s

(a) t = 26 ms.

Cross 
section 1

Cross 
section 2

-2.5 0 2.5 cm/s

(b) t = 50 ms.

�0.4 �0.2 0 0.2 0.4

�0.4

�0.3

�0.2

�0.1

0

0.1

n (mm)

v
(
c
m

/
s
)

(c) Cross section 1.

�0.1 0 0.1

0

0.1

0.2

0.3

0.4

n (mm)

v
(
c
m

/
s
)

(d) Cross section 2.

Fig. 6. (a) and (b) Snapshots in time of fluid velocity field inside the main crack and branches.
(c) and (d) Velocity profiles for the cross sections marked in (b). Note boundary layers and non-
monotonic profiles, both characteristic of oscillatory flows at high frequency. 241 grid points along
each crack segment and 241 grid points across the crack width.

5.2.1. Excitation at the crack mouth. In this first problem, waves are excited595

by specifying a pressure boundary condition p(0, t) = g(t) on �1 (the bottom end of596

the main crack, referred to below as the crack mouth). Excitation at the crack mouth597

preferentially generates Krauklis waves that propagate along the cracks, ultimately598

leading to resonance at specific frequencies determined by the crack geometry. Crack599

mouth excitation can arise from pressure changes transmitted to the crack by an600

unmodeled narrow conduit or pipe, such as a well in hydraulic fracturing operations601

in an oil or gas reservoir. For more details on this problem class, see [26]. The602

boundary data is g(t) = A sin(!t) exp(�⌘t), where A = 100 kPa, ! = 1.2 ⇥ 105 s�1,603

and ⌘ = 100 s�1. This function is a chirp with a maximum frequency f
max

⇡ 2000604

Hz at 1% of peak amplitude. The maximum frequency f
max

is used to estimate605

the minimum wavelength �
min

that needs to be resolved in the simulation. The606

relationship between wavelength � and frequency f is determined by the dispersion607
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relation of the Krauklis waves propagating along the crack. For an infinitely long,608

planar crack filled with an inviscid fluid, we have [24]609

� =

✓
2⇡

Gw0

(1� ⌫)⇢
f

f2

◆1/3

.610
611

We can then estimate �
min

⇠ �(f
max

) ⇠ 0.1 m, suggesting that �
min

will be well-612

resolved on both the coarse and fine grids. To set the grid spacing in the n-direction613

within the fluid, we estimate the ratio of the boundary layer thickness to crack width614

as
p

µ/(⇢
f

!)/maxw0 ⇠ 10%, which should also be well-resolved on both the coarse615

and fine grids.616

The pressure perturbation applied at the crack mouth excites Krauklis waves617

propagating along the fluid-filled crack (Figure 5). As Krauklis waves propagate along618

the crack, the crack walls oscillate inward and outward. A pair of counter-propagating619

waves are formed when the waves are partially reflected at the crack tips and the crack620

junction. Krauklis waves are attenuated primarily by viscous dissipation in the fluid,621

which in the wider parts of the crack is confined to boundary layers at the walls of622

the crack (Figure 6). The coarse and fine grid simulations are visually identical (not623

shown).624

5.2.2. Excitation in the solid. This second problem, involving excitation in625

the solid, demonstrates the potential of our method for studying seismic wave scat-626

tering from fluid-filled cracks. Seismic waves in the solid can be excited by ex-627

plosions or other active sources, or by naturally occurring impulsive perturbations628

such as small earthquakes (i.e., microseismic events). The latter, when the earth-629

quakes are much smaller than modeled wavelengths, can be treated as point mo-630

ment tensor sources. Details on how to discretize the singular source terms with631

high-order accuracy can be found in [37]. Here, for simplicity, we excite waves by632

specifying a Gaussian function as the initial condition in the solid: v
x

(x, y, 0) =633

exp
�
� 1

2a2 (x� x⇤)2 � 1
2a2 (y � y⇤)2

�
mm/s, where a = 1/

p
200 ⇡ 7.1 cm and634

(x⇤, y⇤) = (�1.5,�4) m with the origin located at the bottom end of �1. All of the635

other solid and fluid fields are initially zero.636

5 m

5 m 5 m

t = 3.75 ms t = 5 ms

 0

-50

-25

 25

 50
μm/s

Fig. 7. Snapshots in time of seismic wave scattering from a fluid-filled crack (solid line) and
material interface (dashed line). 481⇥ 481 grid points per block.

The initial disturbance excites both compressional (P) waves and shear (S) waves637

that scatter from the fluid-filled crack (Figure 7). P-to-S conversion along the crack638
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 0 -50-25 25 50

μm/s

(a) 121⇥ 121

 0 -50-25 25 50

μm/s

(b) 241⇥ 241

 0 -50-25 25 50

μm/s

(c) 481⇥ 481

Fig. 8. Grid refinement study at t = 5 ms (grid points per block listed listed in sub-captions).

generates shear head waves, which have curved wavefronts due to the curvature of639

the crack itself. All waves undergo reflections and additional mode conversations640

upon reaching the branch segments (and material interface). Di↵racted waves from641

the crack junction are also evident. Note that in contrast to the previous problem,642

Krauklis waves are almost absent. This is because excitation in this problem is from643

a perturbation to particle velocity approximately normal to the main crack and with644

symmetry across the crack. Opening or closing motions of the crack are therefore645

negligible.646

Figure 8 shows a zoomed-in version of the wavefield at the final time (t = 5 ms)647

at three di↵erent grid resolutions. Dispersion errors that are evident on the coarsest648

mesh vanish with refinement.649

To investigate the computational cost of the fluid model, we compare the per-650

formance of simulations with and without the fluid. In the simulation without the651

fluid, we remove the fluid blocks and instead couple to the neighboring solid blocks652

directly to one another. We measure the time to solution for both simulations after a653

fixed number of time steps. The test is conducted on the grid with lowest resolution,654

using 121⇥ 121 grid points per block in both the solid and fluid (when present). The655

computational cost of the fluid is only about 8% of the total cost. This cost is slightly656

less than the ratio of the number of fluid to solid blocks used in this test.657

6. Conclusions. We have developed a method to simulate wave propagation658

in and around cracks containing a viscous, compressible fluid. Our method achieves659

computational e�ciency relative to other commonly used methods through two key660

components.661

First, rather than solving the full linearized Navier-Stokes equations for the fluid,662

we use a lubrication-type approximation of the fluid response. Viscous e↵ects enter663

only through one-dimensional di↵usion operators in the direction spanning the crack664

width. Even with this approximation, the semi-discrete system of equations can be665

quite sti↵, such that fully explicit time-stepping methods would require several orders666

of magnitude smaller time steps than the time step required for explicit integration667

of the elastic wave equation alone.668

Second, the computational e�ciency is enhanced by partitioning the semi-discrete669

equations in conjunction with an implicit-explicit Runge-Kutta time-stepping method.670

Specifically, we treat the elastic wave equation in the solid and the wave propagation671

part of the fluid equations in a fully explicit manner, whereas the viscous (di↵usion)672

term and fluid-solid coupling terms in the fluid are treated in an implicit manner. By673

enforcing the coupling conditions using characteristic variables, the overall system of674
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equations can be integrated using the maximum stable time step for wave propagation675

only. For typical fluid and solid properties, this corresponds to the typical CFL-limited676

time step used for explicit solution of the elastic wave equation.677

Although we developed the numerical scheme in the context of high-order finite678

di↵erences, the fluid model and many of the results related to the coupling formu-679

lation and partitioning should be applicable to other provably stable schemes with680

weakly enforced coupling conditions in SBP-SAT form (e.g., discontinuous Galerkin681

methods).682

Finally, the method was applied to several application problems involving waves683

in and around fluid-filled cracks. Excitation at the crack mouth generates large am-684

plitude Krauklis waves, and simulations like the ones shown in this work can be used685

to quantify Krauklis wave resonances and their relation to crack geometry [26]. The686

method can also be used to study scattering of seismic waves by fluid-filled cracks.687

Obvious applications include seismic imaging of fractured hydrocarbon-bearing reser-688

voirs, crevasse systems in glaciers and ice sheets, and magmatic dike and sill complexes689

beneath active volcanoes.690
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Appendix A. Energy conserving penalty parameters. This appendix696

continues Section 4.1 with a more detailed investigation of how the stability of the697

fully discrete approximation is influenced by how the coupling conditions are enforced.698

This is done by further investigation of the one-dimensional model problem (35), but699

with a di↵erent choice of penalty parameters. Specifically, we take ↵
s

! 1 and700

�
s

= 0, for which (35) becomes701

Z
�
s

⇢
s

@v
x

@t
dy =

Z
�
s

@�
xy

@y
dy +

h
�
s

⇣
�
xy

� ⌧
⌘i

y=0+
,

Z
'
s

1

G

@�
xy

@t
dy =

Z
'
s

@v
x

@y
dy

Z
�
f

⇢
f

@u

@t
dn =

Z
�
f

⌧dn�
h
µ
@�

f

@n

⇣
u� v

x

⌘i

n=w

+
0

.

(41)702

703

The fluid traction is enforced as a Neumann condition on the solid and the solid704

velocity is enforced as a Dirichlet condition on the fluid. This way of enforcing the705

coupling conditions is a very common approach in many fluid-structure interaction706

schemes [19]. A consequence of using (41) is that there is no additional numerical707

energy dissipation:708

1

2

d

dt

✓Z
⇢
s

v2
x

+
1

G
�2
xy

dy +

Z
⇢
f

u2dn

◆
= �

Z
⌧2

µ
dn.(42)709

710

We next investigate the impact of this coupling procedure on the semi-discrete711

and fully discrete approximations of (41). We write the semi-discrete approximation712

of (41) in the strong form:713

dq

dt
= (W + C)q,(43)714

715
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where q = [vT
x

�T

xy

uT ]T . We use the partitioning dq/dt = (FEX + F IM )q, with716

FEX = WEX + CEX and F IM = W IM + CIM . Consider the following choice of the717

partitioning:718

WEX =

2

4
0 D

y

/⇢
s

0
GD

y

0 0
0 0 0

3

5 , W IM =

2

4
0 0 0
0 0 0
0 0 µ/⇢

f

D
n

D
n

3

5 ,

CEX =

2

4
0 H�1

y

L
s

LT

s

�µH�1
y

L
s

LT

f

D
n

0 0 0
0 0 0

3

5 ,

CIM =
µ

⇢
f

2

4
0 0 0
0 0 0

H�1
n

DT

n

L
f

LT

s

0 �H�1
n

DT

n

L
f

LT

f

3

5 .

(44)719

720

For simplicity, the grid spacing is uniform, implying that there are no metric coe�-721

cients. This partitioning is the same as the one we used before; see (32). The solid is722

fully explicit and the fluid is fully implicit (because in this one-dimensional problem723

there is no wave propagation in the fluid).724
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Fig. 9. Spectral radii of the semi-discrete approximation of the problem (41). The spectral radii
⇢(W + C) (complete problem) and ⇢(FEX) (explicit part of the semi-discrete approximation) are
shown.

Next, we compute the spectral radius of the semi-discrete approximation while725

varying�x
f

/�x
s

. As in Section 4.1, we use ⇢
s

= ⇢
f

and discretize using the SBP(6,3)726

operators. However, for this new choice of penalty parameters, Figure 9 shows that727

the spectral radius ⇢(W + C) is at about one order of magnitude larger than the728

spectral radius ⇢(FEX) (which is determined by the explicit part of the semi-discrete729

approximation, i.e., by wave propagation). Note that the spectral radius of the explicit730

part ⇢(FEX) does not change as �x
f

/�x
s

is varied, indicating that there is no source731
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Fig. 10. Maximum stable CFL number of the fully discrete scheme approximating the problem
(41) with partitioning (44).

of sti↵ness in the explicit part. However, when we look at the maximum stable time732

step of the fully discrete approximation, we find that it is necessary to decrease the733

time step for stability (Figure 10). The important lesson here is that this choice of the734

penalty parameters, when used in combination with the partitioning (44), causes the735

scheme to be unstable for su�ciently large�x
f

/�x
s

, unless the time step is decreased.736

In contrast, the scheme is stable for the penalty parameter choice presented in Section737

4.1 regardless of the value of �x
f

/�x
s

.738

Another way to stabilize the scheme (41), without changing the penalty parame-739

ters, is to modify the partitioning. This modification should be done such that energy740

is conserved in the fully discrete approximation as well. Consider the following energy741

conservative partitioning:742

CEX =

2

4
0 H�1

y

L
s

LT

s

0
0 0 0
0 0 0

3

5 ,(45)743
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f
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n
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n

L
f
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s

0 �µ/⇢
f

H�1
n

DT

n

L
f

LT

f
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5 .744

745

In this case, one can easily show that each sub-problem satisfies an energy balance,746

implying hq, FEXqi  0 and hq, F IMqi  0, where hu, vi =
P

u
j

v
j

h is the discrete747

inner-product, i.e., FEX and F IM are both semi-bounded. We again obtain a fully748

discrete scheme with the attractive property that the maximum stable time step is set749

by wave propagation. In practice, however, we do not use this partitioning because750

the solid penalty terms are treated implicitly, making it more di�cult to implement.751
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2. Crack junction coupling conditions. Consider the coupling of three cracks881

at a junction. Prior to weakly enforcing the coupling conditions, the work rate at the882

junction is883

dE

dt
= �

3X

i=1

n(i)w
(i)
0 p̂(i) ˆ̄u(i) �R,884

885

where (i) labels each crack. We use n(i) to keep track of the sign at each end (n(i) = �1886

and n(i) = 1 for the left and right end, respectively). While the crack can be in any887

direction, the left end is defined at the minimum arc length s along the crack. At the888

junction, the pressure is continuous: p̂ = p̂(1) = p̂(2) = p̂(3). Mass conservation, in the889

context of our linearized model, requires890

3X

i=1

n(i)⇢
(i)
f

w
(i)
0

ˆ̄u(i) = 0.(46)891

892

To ensure R � 0, we need893

↵(i)n(i)w
(i)
0

ˆ̄u(i) + p̂ = ↵(i)n(i)w
(i)
0 v̄(i) + p(i), for i = 1, 2, 3.(47)894895

Multiplying (47) by ⇢
(i)
f

↵(i+1)↵(i+2), and cyclically summing over i = 1, 2, 3 results in896
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(j). Finally, using899

(46) results in900
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