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Summary
A machine learning–based framework for modeling the error introduced by sur-

rogate models of parameterized dynamical systems is proposed. The framework

entails the use of high-dimensional regression techniques (eg, random forests, and

LASSO) to map a large set of inexpensively computed “error indicators” (ie, fea-

tures) produced by the surrogate model at a given time instance to a prediction of

the surrogate-model error in a quantity of interest (QoI). This eliminates the need

for the user to hand-select a small number of informative features. The method-

ology requires a training set of parameter instances at which the time-dependent

surrogate-model error is computed by simulating both the high-fidelity and surro-

gate models. Using these training data, the method first determines regression-model

locality (via classification or clustering) and subsequently constructs a “local”

regression model to predict the time-instantaneous error within each identified

region of feature space. We consider 2 uses for the resulting error model: (1) as a

correction to the surrogate-model QoI prediction at each time instance and (2) as a

way to statistically model arbitrary functions of the time-dependent surrogate-model

error (eg, time-integrated errors). We apply the proposed framework to model errors

in reduced-order models of nonlinear oil-water subsurface flow simulations, with

time-varying well-control (bottom-hole pressure) parameters. The reduced-order

models used in this work entail application of trajectory piecewise linearization

in conjunction with proper orthogonal decomposition. When the first use of the

method is considered, numerical experiments demonstrate consistent improvement

in accuracy in the time-instantaneous QoI prediction relative to the original surro-

gate model, across a large number of test cases. When the second use is considered,

results show that the proposed method provides accurate statistical predictions of the

time- and well-averaged errors.
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1 INTRODUCTION

Computational simulation is being increasingly used for real-time and many-query problems such as design, optimal control,
uncertainty quantification, and inverse modeling. However, these applications require the rapid and repeated simulation of a
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(parameterized) computational model, which often corresponds to a discretization of partial differential equations (PDEs) that
can be nonlinear, time dependent, and multiscale in nature. Accurate predictive models can therefore incur substantial compu-
tational costs. While recent advances in parallel computing have reduced simulation times for high-fidelity models (HFMs), the
rapid, repeated simulation of such models remains a bottleneck in many applications.

This computational challenge has motivated the development of a wide range of surrogate-modeling methods. Surrogate
models—which can be categorized as data fits, lower-fidelity models, or reduced-order models (ROMs)—are approximations of
HFMs that aim to provide large computational savings while preserving accuracy. Unfortunately, these models often introduce
nonnegligible errors because of the assumptions and approximations used in their construction, and these errors can have
deleterious effects on the resulting analysis. Thus, to more rigorously use surrogate models, it is critical to quantify the errors
they introduce. Without reliable error quantification—which can be accomplished via statistical approaches, rigorous error
bounds, error indicators, or error models—the accuracy of surrogate-model predictions is unknown, and the trustworthiness of
the resulting analysis may be questionable.

For this reason, researchers have developed a variety of methods for quantifying surrogate-model errors. Data-fit surrogate
models construct a deterministic function (eg, polynomial fit1 and artificial neural network2) or stochastic process (eg, Gaussian
process/kriging3,4) that explicitly approximates the mapping from the model input parameters to the model output quan-
tity/quantities of interest (QoI). For this class of surrogate model, statistical approaches such as the R2 value,5 cross validation,5,6

confidence intervals, and prediction intervals5,6 can be applied to quantify surrogate error. When the data fit corresponds to a
stochastic-process model, the prediction variance can be applied to quantify the uncertainty in the prediction directly.7,8 Although
data-fit surrogates are nonintrusive to implement (they require only “black-box” queries of the HFM), their predictions are not
physics based, which can lead to inaccurate predictions, especially for high-dimensional input-parameter spaces. For this reason,
many applications demand more sophisticated physics-based surrogates such as lower-fidelity or reduced-order models.

Lower-fidelity models are physics-based surrogates that apply simplifications to the original HFM, such as coarser discretiza-
tions, lower-order approximations, or linearization, or they neglect some physics. In this case, one approach for quantifying the
error would be to explicitly model the error via a “data-fit” mapping between input parameters and lower-fidelity-model error.
These approaches—which have been pioneered in the field of multifidelity design optimization—typically enforce “global”
zeroth-order consistency between the corrected low-fidelity-model QoI and the HFM QoI at training points,9-15 or “local” first-
or second-order consistency at trust-region centers.16,17 Unfortunately, in the context of dynamical systems (which we consider
in this work), such corrections are only applicable to scalar-valued QoI (eg, time-averaged quantities). Quantifying the error in
time-dependent quantities has been largely ignored, with the exception of recent work that interpolates time-dependent error
models in the input-parameter space.18 In addition, the error may exhibit a complex or oscillatory dependence on the input
parameters, which adds further challenges in high-dimensional input-parameter spaces and can cause the approach to fail.13,19

Alternatively, adjoint-based error estimation (i.e., dual-weighted-residual error indicators) can also be applied to approximate
QoI errors in the context of coarse finite-element,20-23 finite-volume,24-26 and discontinuous Galerkin27,28 discretizations. Unfor-
tunately, for dynamical systems, dual-weighted residuals require an additional (time-local or time-global) dual solve, which can
incur a nonnegligible additional cost.

Projection-based ROMs apply projection to reduce the dimensionality of the equations governing the HFM. Typically, the
low-dimensional bases are derived empirically by evaluating the HFM at training points or by performing other analyses, eg,
solving Lyapunov equations or computing a Krylov subspace. ROM error is typically estimated by deriving rigorous a priori and
a posteriori error bounds for the state, QoI, or transfer function; such bounds have been derived for the reduced-basis method,29-31

system-theoretic approaches (eg, balanced truncation and rational interpolation),32 and proper–orthogonal-decomposition
(POD) Galerkin33,34 and least-squares Petrov-Galerkin (LSPG)35 methods; see, eg, Benner et al36 for a review. However—for
dynamical systems—such error bounds typically grow exponentially in time, causing the bound to significantly overpredict
the error,37 which can limit the practical utility of these bounds. Note that the approaches developed for quantifying the
low-fidelity-model error could also be adopted to quantify ROM errors,13,38 as ROMs can be interpreted as lower-dimensional
models with empirically derived basis functions.

To address the above issues in the context of quantifying ROM errors, Drohmann and Carlberg19 devised the
reduced-order-model error surrogates (ROMES) approach, which can be considered an error-modeling approach, as it con-
structs a Gaussian process that maps error indicators (eg, error bounds, residual norms, and dual-weighted residuals) produced
inexpensively by the ROM to a distribution over the ROM QoI error. This study demonstrated that—even in the presence of
high-dimensional input-parameter spaces—the ROM produces a small number of inexpensively computable error indicators
that can be used to derive accurate, low-variance predictions of the ROM error. Follow-on work also investigated the use of
statistical modeling and regression methods to model ROM errors from indicators.39 While promising, the ROMES approach
requires the user to hand-select the error indicators that are most strongly correlated with the ROM error; ie, feature selection
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is left to the user. This task can be challenging in general applications, as the user may not have strong a priori knowledge of
which (small number of) features inform the error. Further, the ROMES method was demonstrated only on a stationary (ie,
steady-state) problem, and its extension to dynamical systems is nontrivial. Finally, application of the ROMES method to other
physics-based surrogates (eg, coarsened or upscaled models) is not obvious, as different error indicators will likely be required
for such surrogates.

In this paper, we propose a machine learning–based framework for modeling the error introduced by physics-based surrogate
models of dynamical systems. The approach applies statistical techniques for high-dimensional regression (eg, random forests)
to map a large set of inexpensively computed quantities or features generated by the surrogate model to a prediction of the
time-instantaneous surrogate-model QoI error. This method is referred to as error modeling via machine learning (EMML).
In contrast to the ROMES method, the proposed EMML approach enables a large number of potential error indicators to be
included in the candidate feature set and thus does not require the user to manually select a small number of features that inform
the error, which can be challenging as mentioned above. Thus, feature selection is included in the process of constructing the
error model, and extension to multiple types of physics-based surrogates is straightforward—we assume only that the surrogate
produces a large set of features that can be mined for potential error indicators.

While the proposed framework can be applied to any surrogate model in principle, in this study, we apply the method to model
errors introduced by a TPWL ROM40-43 applied with a proper orthogonal decomposition (POD) basis and LSPG projection,35,44

which we refer to hereon as POD-TPWL. We use this ROM rather than other approaches (eg, [D]EIM with POD-Galerkin,
GNAT) because TPWL is less intrusive: It simply requires extracting linear operators (ie, Jacobians of the residual with respect
to the current state, previous state, and controls) from the HFM simulation code during the offline training stage, and it is entirely
independent of the HFM simulation code during the online stage. This particular ROM was also used in previous subsurface-flow
studies involving oil-water and oil-gas compositional problems.45-47 At each time step during test simulations, POD-TPWL
performs linearization around the nearest training solution; LSPG projection is then applied—with a low-dimensional POD
basis—to reduce the dimensionality of the linearized system. While the approach has been shown to yield (102) − (103)
speedups,42,43,45 POD-TPWL incurs nonnegligible errors due to the approximations it introduces, namely, (1) linearization error,
and (2) “out-of-plane error”34 arising from using a low-dimensional POD trial subspace, (3) “in-plane error” arising from
projection, and (4) error propagated from the previous time step. See He and Durlofsky46 for further discussion of POD-TPWL
error. We aim to apply the proposed EMML framework to model the QoI error resulting from these approximations.

Finally, we note that while machine learning and its application across various disciplines have been extensively studied,
the use of machine learning within the domain of physics-based modeling and simulation is relatively new, although it is
quite promising.48,49 In the context of improving surrogate-model predictions, researchers have recently investigated the use of
machine learning techniques to identify (via classification) the spatial locations for high low-fidelity-model error.50 Machine
learning has also been used to quantify the inherent error with kriging data-fit surrogates51 and to derive improved closure models
in the context of computational fluid mechanics.52-56 Machine learning was also applied to derive the source term for the transport
of an intermittency variable while transitioning from laminar to turbulent flow.57 Similarly, regression techniques (eg, LASSO58)
have been used to calibrate and infer uncertainties in viscosity-model coefficients for transonic flow applications.59 We note
that although machine learning has been used in a postprocessing step to identify the physical regions of high surrogate-model
error,50 to our knowledge, the direct approximation of error through construction of a regression model has not been pursued.

The paper proceeds as follows. In Section 2, we describe the general EMML framework. Following the definition of the
error in the QoI, we introduce 4 methods to map this error to a set of inexpensively computed features using high-dimensional
regression techniques. The particular HFM (subsurface flow) and surrogate model (POD-TPWL) considered as an application
are discussed in Section 3. In Section 4, we present numerical results for modeling the POD-TPWL error in flow quantities driven
by time-varying control variables over a large number of test cases. Different algorithmic treatments are also considered. A
summary and suggestions for future work are provided in Section 5. Appendices A and B present descriptions of random-forest
and LASSO regression.

2 GENERAL PROBLEM STATEMENT

In this section, we describe the overall EMML framework for error modeling. We begin by introducing both the HFM and the
surrogate model in a general setting.

2.1 Dynamical-system high-fidelity model
Given input parameters 𝝁 ∈ R

N𝜇 , we assume that the HFM generates a time history of states xn ∈ RNx , n = 1, … ,Nt, and a
scalar-valued output QoI q that depends on the state, ie,
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gn ∶ 𝝁 → xn, n = 1, … ,Nt,

∶ R
N𝜇 → R

Nx ,
(1)

q ∶ Px → q(Px),
∶ R

NP → R.
(2)

Here, P ∈ {0, 1}NP×Nx with NP ≤ Nx is a sampling matrix comprising selected rows of the identity matrix. This operator extracts
the elements of the state vector required to compute the QoI q.

2.2 Dynamical-system surrogate model
We assume that the inexpensive surrogate model generates a time history of surrogate-model states zn ∈ R𝓁 , n = 1, … ,Nt
(ideally with 𝓁 ≪ Nx), given the input parameters 𝝁 ∈ R

N𝜇 . The QoI can be computed from the surrogate model state z using
the function qsurr. Our critical assumption is that the surrogate model also produces auxillary data in the form of a time history
of “features” f n ∈ R

1×Nf , n = 1, … ,Nt, given these parameters 𝜇. The surrogate model is described as follows:

gn
surr ∶ 𝝁 → zn, n = 1, … ,Nt,

∶ R
N𝜇 → R

𝓁 ,
(3)

qsurr ∶ z → q(P̃z),
∶ R

𝓁 → R,
(4)

f n ∶ 𝝁 → f n(𝝁), n = 1, … ,Nt,

∶ R
N𝜇 → R

1×Nf .
(5)

Here, P̃ ∈ RNP×𝓁 denotes a prolongation operator that transforms the surrogate model state into the elements of the high-fidelity
state required to compute the QoI. The decision of what to include in the set of features is motivated by the underlying form of
gn

surr, as discussed in Section 3.3. For notational simplicity, from hereon, we use f n in place of f n(𝜇).

2.3 Error modeling
Our objective is to predict the error in the QoI at each time step n, which we define as

𝛿n
q(𝝁) ∶= qn(𝝁) − qn

surr(𝝁), n = 1, … ,Nt, (6)

where 𝛿n
q ∈ R, qn(𝜇) ∶= q◦Pgn(𝜇) denotes the QoI computed using the HFM at time instance n, and qn

surr(𝝁) ∶= qsurr◦gn
surr(𝝁)

denotes the QoI computed using the surrogate model at time instance n. We propose to approximate this QoI error as 𝛿n
q ≈

𝛿n
q , n = 1, … ,Nt, by constructing error surrogates using high-dimensional regression methods developed in the context of

machine learning.
In particular, we propose 4 regression-based approaches that construct a mapping from the surrogate-model features to a

QoI-error prediction 𝛿n
q . While it is possible to construct an error prediction 𝛿n

q as a function of only the input parameters 𝜇, this
approach can fail because of the oscillatory behavior of certain surrogate-model errors in the input space,13,19 as discussed in
the Introduction. For notational simplicity, hereon 𝛿n

q = 𝛿n
q(𝝁).

2.3.1 Method 1: QoI error
The first method models the nondeterministic mapping f n → 𝛿n

q as a sum of a deterministic function rq ∶ R
1×Nf → R, and

nondeterministic noise 𝜖 as follows:
𝛿n

q = rq( f n) + 𝜖, n = 1, … ,Nt. (7)
Here, 𝜖 is a zero-mean random variable that accounts for potentially unknown features, deficiencies in the model form of rq,
and the error introduced due to sampling variability. Thus, 𝜖 denotes irreducible error induced by the error model Equation 7,
and it may in principle depend on the features (ie, 𝜖 = 𝜖( f n)); this heteroscedasticity can occur, for example, when the mean
and variance of the predicted error are larger for larger-magnitude features. For simplicity, we neglect this dependence in the
current study.

We note that using the error model in Equation 7 allows us to (1) approximate the form of rq using data, which in turn enables
us to express the error in the QoI as a function of the features only, and (2) account for the possibility that the same feature
vector may yield different values of the QoI error, ie, 𝛿n

q ≠ 𝛿m
q with n ≠ m but f n = f m.
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Next, we construct a model r̂q ∶ R
1×Nf → R of the function rq, such that r̂q( f n(𝝁)) ≈ rq( f n(𝝁)), n = 1, … ,Nt, ∀𝝁 ∈ R

N𝜇 .
This model allows the error to be approximated as a function of the features as

𝛿n
q = r̂q( f n), n = 1, … ,Nt. (8)

Note that we consider modeling 𝛿n
q as a prediction problem rather than as a time-series-analysis problem. This is because, in

the problem under consideration, we perform numerical experiments for different input-parameter instances over the same time
interval. Thus, we include time in the feature set, as described in Section 3.3. Implicitly, we assume that samples are independent
and identically distributed (iid), with each sample corresponding to the quantity at a given time step.

2.3.2 Method 2: relative QoI error
In many cases, the QoI errors 𝛿n

q(𝝁) can exhibit a wide range of observed values. This can make the machine learning task
more challenging, as the associated regression model must be predictive across this entire range of values. To address this, we
can instead apply regression to the relative QoI errors—which typically exhibit a narrower range of values—and subsequently
approximate the QoI errors in a postprocessing step.

We define the relative QoI error at time step n by

𝛿n
q ∶=

𝛿n
q

q(Pxn)
, n = 1, … ,Nt, (9)

and—following Method 1—express the mapping f n → 𝛿n
q as

𝛿n
q = r̄q( f n) + 𝜖, n = 1, … ,Nt, (10)

where r̄q ∶ R
1×Nf → R is an unknown deterministic function. We model r̄q by constructing an approximation ̂̄rq ∶ R

1×Nf → R

such that ̂̄rq( f n(𝝁)) ≈ rq( f n(𝝁)), n = 1, … ,Nt, ∀𝝁 ∈ R
N𝜇 . This allows the approximated relative error to be expressed as

̂̄𝛿
n
q = ̂̄rq( f n), n = 1, … ,Nt. (11)

From Equation 6, it follows that

q(Pxn) =
q(P̃zn)
1 − 𝛿n

q
, n = 1, … ,Nt, (12)

which allows the QoI error to be related to the relative QoI error by

𝛿n
q = q(P̃zn)

(
𝛿n

q

1 − 𝛿n
q

)
, n = 1, … ,Nt. (13)

Therefore, we can model the QoI error as 𝛿n
q from the relative QoI regression model ̂̄𝛿

n
q in a postprocessing step as

𝛿n
q = q(P̃zn)

(
̂̄𝛿
n
q

1 − ̂̄𝛿
n
q

)
, n = 1, … ,Nt. (14)

2.3.3 Method 3: state error
As an alternative to modeling the QoI error, we can model the error in the relevant state(s) and then use this quantity to approx-
imate the QoI error. This method is advantageous when the QoI error exhibits a more complex behavior than the state error, as
may be the case for highly nonlinear QoI. We denote the error in the sampled state at time step n by

[𝜹n
ss]i ∶= [Pxn]i − [P̃zn]i, n = 1, … ,Nt, i = 1, … ,NP, (15)

where 𝜹n
ss ∈ RNP and [·]i denotes the ith element of the vector-valued argument.

The next steps follow closely the derivation of Method 1. As before, we model the mappings f n → [𝜹n
ss]i as

[𝜹n
ss]i = rss,i( f n) + 𝜖, n = 1, … ,Nt, i = 1, … ,NP, (16)
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where rss,i ∶ R
1×Nf → R, i = 1, … ,NP denotes unknown deterministic functions that allow the state-variable errors to be

computed as a function of the features. Analogous to Equation 7, we construct regression models r̂ss,i ∶ R
1×Nf → R, such that

r̂ss,i( f n(𝝁)) ≈ rss,i( f n(𝝁)), n = 1, … ,Nt, i = 1, … ,NP, ∀𝝁 ∈ R
N𝜇 . This model allows the approximated state error to be

expressed as
[�̂�n

ss]i = r̂ss,i( f n), n = 1, … ,Nt, i = 1, … ,NP. (17)

Note that instead of pursuing multiresponse multivariate regression, we execute NP independent multivariate regressions,
ie, we construct a unique and independent mapping r̂ss,i for each of the NP sampled states. Because the QoI error can be
expressed as

𝛿n
q = q

(
P̃zn + �̂�

n
ss

)
− q(P̃zn), n = 1, … ,Nt, (18)

we can model the QoI error from the modeled state error in a postprocessing step as

𝛿n
q = q

(
P̃zn + �̂�

n
ss

)
− q(P̃zn), n = 1, … ,Nt. (19)

2.3.4 Method 4: relative state error
Finally, if the errors in a particular sampled state exhibit a wide range of observed values, we can construct a regression model
for the relative state error, which we define as

[�̄�n
ss]i ∶=

[𝜹n
ss]i

[Pxn]i
, n = 1, … ,Nt, i = 1, … ,NP, (20)

with �̄�
n
ss ∈ RNP , and subsequently use this model to predict the QoI error. Analogous to Methods 1 to 3, we construct a

regression model, which maps the features f n to the relative error in the sampled state [�̄�n
ss]i, thus enabling the computation of

the approximated relative error [ ̂̄𝜹
n
g]i. Analogous to Method 2, we relate the relative error in the sampled state to the actual error.

After using Method 3 or Method 4 or some combination thereof to compute the value of [�̂�n
ss]i, ∀i = 1, … ,NP, we apply

Equation 19 to determine the QoI error model 𝛿q.

2.4 Training data
Each of the 4 methods described above entails the use of a regression model to predict the output (response)—which corresponds
to the actual or relative error in the QoI or in the sampled state—given the inputs (features). Constructing any such regression
model relies on training data. We denote points in the input-parameter space used to collect these data as

EMML ∶= {𝝁1, … ,𝝁N} ⊆ R
N𝜇 ,

where 𝝁i ∈ R
N𝜇 , i = 1, … ,Ntrain denotes the ith EMML training instance of the input parameters, and Ntrain denotes the number

of training points.
Next, we simulate both the HFM and the surrogate model for input-parameter instances in the training set EMML. This

produces the EMML training data, which comprise errors 𝛿n
q , 𝜹

n
ss, and features f n over all time steps and training simulations,

i.e.,
{
(
𝛿n

q(𝝁), 𝜹n
ss(𝝁), f n(𝝁)

)
}𝝁∈EMML, n=1,… ,Nt .

As mentioned previously, we assume that the associated samples are iid. In the following, we denote a general training error
by 𝛿n(𝜇), 𝝁 ∈ EMML, n = 1, … ,Nt.

2.5 Regression-model locality
As an alternative to constructing a single global regression function, rss,i, r̄ss,i, rq, or r̄q, that is valid over the entire feature space,
we can instead construct multiple “local” regression models that are tailored to particular physical regimes or feature-space
regions with the intent of improving prediction accuracy. To realize this, we partition the training data into subsets correspond-
ing to different feature-space regions and construct separate regression functions for each subset. We consider 2 methods for
determining regression-model locality: classification and clustering.

Classification is a supervised machine learning technique6 that predicts the label (or category) to which an observation
belongs. In this work, it entails constructing a statistical model from EMML training data containing samples whose cate-
gory membership is known, along with categorization criteria for those samples. In the current context, we propose applying
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classification using “classification features” f c ∈ R
1×Nfc that may in general be different from the EMML features f. We use

these features to identify the subsets of the EMML training data associated with different physical regimes of the problem, for
which different regression models are appropriate. Then, given a new observation for which we require error prediction, we
first identify its category using the classification model and subsequently apply the associated local regression model for error
prediction.

Clustering is an unsupervised machine learning method6 that can be applied to partition the training data according to the (eg,
Euclidean) distance in feature space between the training samples. We propose partitioning feature space (or a lower-dimensional
space embedded in feature space computed, eg, via principal component analysis) according to the Voronoi diagram produced
by the cluster means. In this work, we use k-means clustering where the number of clusters k is determined by identifying the
elbow of the curve reporting the sum of squared errors as a function of the number of clusters.6 Given a new observation, we
first identify its cluster from the Voronoi diagram and then apply the local regression model.

2.6 High-dimensional regression methods
While, in principle, standard regression methods (eg, linear regression) could be used to construct error surrogates rss,i, r̄ss,i, rq,
and r̄q, such approaches may be ineffective when the number of candidate features Nf produced by the surrogate model is large.
This occurs, for example, when a projection-based reduced-order model is used as the surrogate. This ineffectiveness arises
because of (1) the lack of available guidelines for feature-subset selection, (2) the time-consuming and challenging nature of
a priori identification of the relevant subset of features, and (3) the fact that the response-feature relationship may depend on
nonlinear interactions between a large number of features. We therefore propose applying high-dimensional regression methods
that incorporate automatic feature selection.

A wide range of methods—such as tree-based methods (gradient boosting and random forests), support vector machines,
K-nearest neighbors, elastic-net, and artificial neural network—fits within this category. While the specific choice of regression
technique depends on the problem at hand, we pursue 2 specific methods in this work: random-forest regression (RF) and
LASSO (least absolute shrinkage and selection operator58) regression (LS). For completeness, Appendices A and B provide
brief summaries of these 2 techniques.

2.7 Application of error models
We propose 2 practical ways to use a QoI-error prediction 𝛿n

q : (1) as a correction to the surrogate-model QoI prediction at a given
time instance or (2) as an error indicator to be used within the Gaussian process–based ROMES framework19 for statistically
modeling arbitrary functions of the time-dependent surrogate-model error. These approaches are now described in turn.

2.7.1 QoI correction
The most obvious way in which to use the QoI-error prediction 𝛿n

q is simply to apply it as a correction to the time-instantaneous
QoI computed using the surrogate model, ie, use

qn
corr(𝝁) ∶= qn

surr(𝝁) + 𝛿n
q(𝝁), (21)

as a corrected QoI at time instance n. Of course, our expectation is that the corrected QoI error has smaller magnitude than the
surrogate QoI error, ie, |qn(𝝁) − qn

corr(𝝁)| = |𝛿n
q(𝝁) − 𝛿n

q(𝝁)| < |qn(𝝁) − qn
surr(𝝁)| = |𝛿n

q(𝝁)|.
2.7.2 QoI error modeling
Alternatively, we can adopt the perspective of the ROMES method,19 which aims to construct a statistical model of
the surrogate-model error via Gaussian process regression. The key insight of the method is that one particular type of
surrogate—reduced-order models—produce inexpensively computable error indicators such as error bounds, residual norms,
and dual-weighted residuals that correlate strongly with the surrogate-model error. The method exploits such error indicators by
constructing a Gaussian process that maps the chosen error indicator to a (Gaussian) distribution over the true surrogate-model
error.

In the present context, given an arbitrary function of the time-dependent surrogate-model error that we would like to
predict, h(𝛿1

q(𝝁), … , 𝛿
Nt
q (𝝁)), we propose using the same function applied to the EMML-predicted surrogate QoI errors,
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h(𝛿1
q(𝝁), … , 𝛿

Nt
q (𝝁)), as an error indicator in the ROMES framework. We expect this to perform well if the EMML QoI-error

predictions 𝛿n
q , n = 1, … ,Nt are accurate representations of the true QoI errors 𝛿n

q , n = 1, … ,Nt.

Specifically, defining a probability space (Ω, ,P), we approximate the deterministic mapping𝝁 → h(𝛿1
q(𝝁), … , 𝛿

Nt
q (𝝁)) by a

stochastic mapping h(𝛿1
q(𝝁), … , 𝛿

Nt
q (𝝁)) → ĥ, with ĥ ∶ Ω → R a scalar-valued Gaussian random variable that can be considered

a statistical model of the true error function h(𝛿1
q(𝝁), … , 𝛿

Nt
q (𝝁)). The stochastic mapping is constructed via Gaussian process

regression using ROMES training data{(
h(𝛿1

q(𝝁), … , 𝛿
Nt
q (𝝁)), h(𝛿1

q(𝝁), … , 𝛿
Nt
q (𝝁))

)}
𝝁∈ROMES

,

where ROMES ⊂ R
N𝜇 denotes the ROMES training set, which should be distinct from the EMML training set EMML.

3 APPLICATION TO SUBSURFACE FLOW

In this section, we first present the governing equations for a 2-phase oil-water subsurface flow system, followed by the
POD-TPWL reduced-order (surrogate) model used in this work. We then describe the specialization of the EMML components
(error-modeling approach, feature design, training/test data, determining locality for the regression model) used for this appli-
cation. Please refer to Cardoso and Durlofsky42 for a description of the oil-water flow equations and associated finite-volume
discretization, and for a detailed development of POD-TPWL for such systems. The use of LSPG projection with POD-TPWL
is described in literature.45-47

3.1 High-fidelity model: two-phase oil-water system
The HFM for the 2-phase oil-water problem entails statements of conservation of mass for the oil and water components com-
bined with Darcy's law for each phase. Assuming immiscibility (which means that components only exist in their corresponding
phase), and neglecting capillary pressure and gravitational effects, the equations for phase j can be written as

𝜕

𝜕t
(
𝜙𝜌jSj

)
+ ∇ ·

(
𝜌jvj

)
+ 𝜌jq̃j = 0, (22a)

vj = −𝜆jk∇p, (22b)

where j=o designates the oil phase and j=w the water phase, t is time, 𝜙 is porosity (void fraction within the rock), 𝜌j denotes
phase density, Sj is phase saturation (ie, phase fraction), vj is the Darcy phase velocity, q̃j denotes the well phase flow rate per
unit volume (q̃j > 0 for production/sink wells and q̃j < 0 for injection/source wells), k denotes the permeability tensor (taken to
be isotropic in the examples here), 𝜆j = krj(Sj)∕𝜇j designates the phase mobility, with krj the relative permeability to phase j and
𝜇j the phase viscosity, and p denotes pressure (note that po = pw = p because capillary pressure is neglected). We additionally
have the saturation constraint Sw + So = 1. For subsurface flow problems, we are often interested in predicting the phase flow
rates for all production and injection wells.

The 2-phase system described by Equation 22 is discretized using a finite-volume method with pressure p and water saturation
S ∶= Sw in each grid block as the primary unknowns. Thus, NP = 2. Then the (time-dependent) states can be represented as

x =
[
p1 S1 · · · pNc SNc

]T ∈ R
2Nc , (23)

where Nc denotes the number of grid blocks; thus, Nx = 2Nc for this application. At each time step, we consider the set of QoI
to be the well phase flow rates qj, at a subset of Nu ≪ Nc grid blocks referred to as the well blocks, which we represent by the
indices  ∶= {d1, … , dNu} ⊂ {1, … ,Nc} with  = P ∪I and P ∩I = ∅, where P ⊆  denotes the set of producer
wells and I ⊆  denotes the set of injector wells.

We compute these flow-rate QoI using the standard Peaceman well model60:

(qj)d = (Twell)d
(
𝜆j
)

d (pd − ud) , j = o,w for d ∈ P, j = w for d ∈ I . (24)

Here, subscript d indicates the value of a variable at grid block d, Twell ∈ R+ denotes the well index, which depends on the well-
bore radius and well-block permeability and geometry (Twell is essentially the transmissibility linking the well to the well block),
and u ∈ R+ denotes the prescribed wellbore pressure, also referred to as the bottom-hole pressure (BHP). Equation 24 is written
for a discrete finite-volume model. Thus, (qj)d = q̃jVd, where Vd is the volume of grid block d

(
(qj)dis of units volume/time

)
.
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In the systems considered here, only water is injected. The output-function q introduced in Equation 2 is defined by
Equation 24, where the sampling matrix P simply extracts the pressure and saturation from the appropriate well block, ie, the
output corresponding to (qj)d, j = o,w, uses a sampling matrix Pd = [e2d−1 e2d]T , where ei denotes the ith canonical unit vec-
tor. Thus, the QoI depends on both pressure and saturation, ie, NP = 2 for each QoI. Note that the treatment described here is for
cases where a particular well penetrates only a single grid block. Our procedures can be generalized, however, for multiblock
well penetrations and for cases where rates (rather than BHPs) are specified.

In this work, we use the time-varying well BHPs as the control variable. We denote the (time-dependent) control vector as

u =
[
ud1

· · · udNu

]T
∈ R

Nu . (25)

The time-varying BHP profiles constitute the input parameters, ie,

𝝁 =

[ u1

⋮
uNt

]
∈ R

N𝜇 , (26)

thus, N𝜇 = NuNt. Alternatively, well flow rates (qj)d, d ∈ , or a combination of rates and BHPs, could be prescribed as the
control variables.

Following other works,42,43,45 the discretized set of nonlinear algebraic equations (obtained using fully implicit discretization*)
describing the HFM is represented as

gn ∶= g
(
xn, xn−1,un) = 0, n = 1, … ,Nt, (27)

where g ∶ (x̄1, x̄2, ū) → g(x̄1, x̄2, ū) and g ∶ R2Nc × R2Nc × RNu → R2Nc designate the residual vector we seek to drive to zero,
and superscript n denotes the value of a variable at time step n. The state operator gn defined in Equation 1 is implicitly defined
by the sequential solution to Equation 27.

3.2 Surrogate model: POD-TPWL
We now briefly describe the POD-TPWL formulation for oil-water systems, which will be our surrogate model for this appli-
cation. For further details, the reader is referred to previous studies.42,43,45-47 Given a set of “test” controls un, n = 1, … ,Nt, the
POD-TPWL model linearizes the residual around a previously saved “training” simulation solution. Then, at time step n in the
test simulation, rather than solving the system of nonlinear algebraic Equation 27 using, eg, Newton's method, we instead solve
the system of linear algebraic equations

gn
L ∶= J́i(xn − x́i) + B́i(xn−1 − x́i−1) + Ći(un − úi) = 0, n = 1, … ,Nt, (28)

where we have used the fact that g(x́i, x́i−1, úi) = 0 and defined

J́i ∶=
𝜕g
𝜕x̄1

||||(x́i,úi)
∈ R

2Nc×2Nc , B́i ∶=
𝜕g
𝜕x̄2

||||x́i−1
∈ R

2Nc×2Nc ,

Ći ∶=
𝜕g
𝜕ū

||||(x́i,úi)
∈ R

2Nc×Nu .

Here, x́ denotes the (saved) training simulation state, ú denotes the training controls, and i denotes the time step associated
with the training state about which we linearize. Note that an accent ·́ indicates that the quantity has been saved during training
simulations. While the criterion for determining the “closest” training configuration (x́i, x́i−1, úi) about which to linearize is
application dependent, here we use pore volume injected (PVI) to determine the appropriate training solution. The PVI quantifies
the fraction of the system pore space that has been filled by injected fluid (water in our case), and as such corresponds to a
dimensionless time. Thus, we seek to linearize around a solution that has progressed to the same PVI as the current test solution.
See He and Durlofsky45 for further discussion and details on the computation of PVI.

To reduce the computational cost associated with solving Equation 28, we approximate the state x in a low-dimensional affine
subspace, using POD, as x ≈ Φz+x̄, where Φ ∈ R2Nc×𝓁 denotes a POD basis, z ∈ R𝓁 designates the reduced state, and x̄ ∈ R2Nc

indicates a reference state, which is often taken to be the mean of the snapshots. Replacing x with Φz+ x̄ in Equation 28 yields

'gn
L = J́iΦ(zn − źi) + B́iΦ(zn−1 − źi−1) + Ći(un − úi) = 0, (29)

where ź ∶= ΦT (x́ − x̄).

*Note that this assumes that a linear multistep method with k = 1 step is applied for time integration.
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Because Equation 29 is overdetermined (2Nc equations and 𝓁 < 2Nc unknowns), it may not have a solution. Thus, we reduce
the number of equations to𝓁 by forcing the residual in Equation 29 to be orthogonal to the range of a test basisΨ ∈ R2Nc×𝓁 . In line
with previous studies on the application of POD-TPWL for subsurface flow models,45-47 we use the least-squares Petrov-Galerkin
(LSPG) test basis,35,44,61 ie,Ψi = J́iΦ. Premultiplying Equation 29 by (Ψi)T, the linear system of equations in the low-dimensional
space is now expressed as

gn
RL = J́i

r(zn − źi) + B́i
r(zn−1 − źi−1) + Ći

r(un − úi) = 0, (30)

where

J́i
r ∶=

(
Ψi)T J́iΦ ∈ R

𝓁×𝓁 , B́i
r ∶=

(
Ψi)T B́iΦ ∈ R

𝓁×𝓁 , (31)

Ći
r ∶=

(
Ψi)TĆi ∈ R

𝓁×Nu , (32)

and the subscript RL indicates that this is the POD-TPWL representation. Thus, the surrogate-state operator gn
surr defined in

Equation 3 is implicitly defined by the sequential solution to Equation 30 for this application. Further, this implies P̃ = PΦ. We
also define the prolongation operator associated with the output in well block d as P̃d ∶= PdΦ for this system. During online
POD-TPWL computations, well-block saturations computed as P̃dzn can fall outside of the physical range. In this case, any
S < 0 is mapped to S = 0, and S > 1 is mapped to S = 1.

POD-TPWL requires some number of training runs to be performed during an offline stage. These training simulations involve
solving Equation 27 for prescribed time-varying BHPs 𝝁 ∈ TPWL ⊆ R

N𝜇 , where TPWL denotes the TPWL training points. The
state snapshots generated from the training simulations are saved and used to construct the POD basis Φ by performing SVD on
the (centered) snapshots. The constructed POD basis is then used to perform offline processing, which involves computing and
saving quantities such as J́i

r, B́i
r, and Ći

r. Although several training runs are used to construct the POD basis, only one of these,
referred to as the primary training run, is used for linearization (ie, J́i, B́i, and Ći all derive from the primary training run).

3.3 Error modeling
To model QoI errors, we adopt 2 approaches. Approach 1 is a hybrid treatment wherein we apply Method 4 (Section 2.3.4) to
model relative errors in the well-block pressure and Method 3 (Section 2.3.3) to model errors in the well-block saturation. We
pursue this approach because the error in the well-block pressure can exhibit a wide range of values, which makes modeling the
relative error an easier task. On the other hand, the error in the well-block saturation spans a narrow range of absolute values
because 0 ≤ S ≤ 1; thus, directly modeling the state error is appropriate. Approach 2 simply applies Method 2 (Section 2.3.2)
to model the relative QoI error directly.

3.4 Feature design
The definition of the QoI in well block d (Equation 24), the HFM governing Equation 27, and the surrogate-model governing
Equation 30 suggest that the corresponding sampled-state error 𝜹n

ss and QoI error 𝛿n
q will likely depend on data such as the

states/controls about which POD-TPWL is linearized (P̃d źi, P̃d źi−1, úi), the current well-block state P̃dzn, the previous well-block
state P̃dzn−1, and operators associated with the linearized system such as PdJ́iPT

d ∈ R2×2, PdB́iPT
d ∈ R2×2, and PdĆiPT

d ∈ R2×2,
where the 2 × 2 matrix is converted to a 1 × 4 row vector. Similarly, these errors may also depend on other quantities such as
the PVI in the primary training (PVIi) and the test case (PVIn), as well as data such as time-step sizes Δtn and Δt́i, and time
instances tn and t́i. Some of the features used in this work are shown in Table 1. We note that most of these features are already
computed during the course of the ROM simulation (eg, the control input un

d), while others (eg, ⟨zn,źi⟩||zn||2 ||źi||2 ) can be computed

via inexpensive computations, with cost scaling with the ROM dimension 𝓁. Further, while Hessian information is useful for
informing the linearization error of TPWL, we do not include it in the feature set due to the high cost of its computation.47

Note that solving Equation 30 for time step n requires information from time step n − 1; however, we could also include data
from multiple previous time steps in the set of features. To include features generated over a “memory” of 𝜏 previous time steps,
we define a new feature vector f n

mem(𝜏) ∶=
[

f n f n−1 · · · f n−𝜏] ∈ R
1×(1+𝜏)Nf . Note that some features in f n

mem(𝜏) will be
strongly correlated (some will be identical); we remove such highly correlated features in a preprocessing step by computing
the feature-feature Pearson correlation coefficients for all pairs. Further details on correlation-criteria-based feature selection
can be found in Guyon and Elisseeff.62
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TABLE 1 A subset of the features f n used in EMML

No. Feature No. Feature

1. P̃dzn 2. P̃d źi

3. P̃dzn−1 4. P̃d źi−1

5. (eT
2dΦ)(zn − zn−1) ∕ Δtn 6. (eT

2dΦ)(źi − źi−1) ∕ Δti

7. un
d 8. úi

d

9. Pd J́iPT
d 10. PdB́iPT

d

11. PdĆiPT
d 12. ⟨zn ,źi⟩||zn||2 ||źi||2

13. Δtn 14. Δt́i

15. PVIn 16. PVIi

17. tn 18. t́i

19. P̃2dzn − P̃2d źi 20. P̃2dzn−1 − P̃2d źi−1

3.5 EMML training and test data
Following Trehan and Durlofsky,47 we generate a set of NBHP BHP controls by adding unique random perturbations to the
“primary” training BHP control �́� ≡

[
(ú1)T · · · (úNt )T

]T ∈ TPWL used in the primary training run. For a given set of BHP
controls, we define the perturbation in producer BHPs as

ΔuP(𝝁) =
∑

d∈P

∑Nt
k=1 |uk

d − úk
d|Δtk∑Nt

k=1 |úk
d|Δtk

. (33)

The perturbation in injection BHPs ΔuI(𝜇) is defined by instead performing summation over the set of injector wells I .
We partition the NBHP BHP schedules into Ntrain < NBHP clusters according to their representation in the (two-dimensional)

space defined by ΔuP and ΔuI. We select the BHP schedules closest to the cluster centers as “representative” schedules for
which we simulate both the POD-TPWL and the HFMs. This subset of controls EMML ∶= {𝝁1

train, … ,𝝁
Ntrain

train } ⊆ R
N𝜇 consti-

tutes the EMML training data. The remaining set of NBHP − Ntrain test schedules comprises the EMML test data EMML ∶=
{𝝁1

test, … ,𝝁
NBHP−Ntrain
test } ⊆ R

N𝜇 . We note that the test set is not used in the construction of the EMML model; it is simply used to
assess EMML performance after the model has been constructed.

3.6 Regression-model locality for POD-TPWL
As described in Section 2.5, we determine regression-model locality using classification and clustering to construct tailored
local regression models for error prediction. Recall that QoI, described in Equation 24, correspond to the oil and water flow
rates at the production wells P and water flow rates at the injection wells I . We construct a local regression model only
for production-well QoI (qj)d, j = o,w, d ∈ P; in fact, we determine regression-model locality for each production well
independently, which is valid for both the oil- and water-flow rate QoI at that well. We do not construct local regression models
for injection-well QoI (qw)d, d ∈ I , as a global regression model performs well in this case due to the relatively simple behavior
of the associated QoI errors.

3.6.1 Classification
For production-well QoI, we partition the EMML training data into 4 categories. This partitioning is based on well-block
saturation Sd, d ∈ P, as shown in Figure 1, where the blue curve represents the POD–TPWL prediction and the black curve
the corresponding HFM prediction.

The 4 categories correspond to different stages of the system and are referred to as A,B+,B−, and C. All samples with
(Sd)RL ≤ 𝜀A and Sd ≤ 𝜀A are assigned to category A, where (Sd)RL denotes the well-block saturation predicted by POD-TPWL
and, as before, Sd denotes well-block saturation from the high-fidelity simulation. Thus, all the samples in category A have close
agreement between the POD-TPWL and HFM solutions; this category corresponds to the state before water “breakthrough”
occurs at a particular production well. Samples with 𝜀A < (Sd)RL ≤ Sd ≤ 𝜀C are assigned to category B+, while samples with
𝜀A ≤ Sd < (Sd)RL ≤ 𝜀C are assigned to category B−. Finally, samples with Sd > 𝜀C are assigned to category C. This category
corresponds to significant water production. The actual values used in this work for 𝜀A and 𝜀C are given in Section 4.
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FIGURE 1 Category assignment for EMML training data for a producer well

TABLE 2 Classification features f n
c corresponding to a production well in grid block

d ∈ P

No. Feature No. Feature

1.
( n∑

k=1

(
uk

d − úk
d

)2
)1∕2

2. 1
n

n∑
k=1

(
(uk

d)RL − úk
d
)

3.
( n∑

k=1

(
(eT

2d−1 − eT
2d′−1)Φzk)2

)1∕2
, d′ ∈ I 4.

( n∑
k=1

(
(eT

2d−1Φ)(zk − źk)
)2
)1∕2

5. 1
n

n∑
k=1

(eT
2d−1 − eT

2d′−1)Φzk, d′ ∈ I 6. 1
n

n∑
k=1

(eT
2d−1Φ)(zk − źk)

As mentioned in Section 2.5, we perform classification using classification features f c ∈ R
1×Nfc . These features quantify

(1) the perturbation in the prescribed control variables uk
d, k = 1, … , n, d ∈ P relative to the primary training BHP

controls úk
d, k = 1, … , n, d ∈ P, and (2) the differences in well-block pressure for producer-injector pairs, which in turn

may impact the velocity field as indicated by Equation 22b. For a production well located in grid block d ∈ P, classification
features include quantities such as the difference between the test BHP schedule and the primary training run BHP controls �́�,

ie,
( n∑

k=1

(
uk

d − úk
d

)2
)1∕2

, the average well-block pressure difference between all producer-injector pairs, 1
n

n∑
k=1

(eT
2d−1−eT

2d′−1)Φzk,

d′ ∈ I , and the average well-block pressure difference between the test case and the primary training simulation, represented

by 1
n

n∑
k=1

(eT
2d−1Φ)(zk − źk). Table 2 reports some of the classification features used in the current application.

4 NUMERICAL RESULTS

In this section, we present numerical results for the application described in Section 3. The specific problem involves flow
simulation in a synthetic two-dimensional horizontal reservoir. The reservoir model contains 50 × 50 grid blocks such that
Nc = 2500 and Nx = 5000. It contains 3 production wells |P| = 3, which we label as P1, P2, and P3, and 3 injection wells|I| = 3, which we label as I1, I2, and I3. The 6 wells (Nu = 6) are shown in Figure 2. The permeability field is isotropic,
ie, k = diag(k), and the porosity is set to 𝜙 = 0.2. The relative permeability functions are prescribed to be krw(S) = S2 and
kro(S) = (1 − S)2. We apply a backward Euler time integrator with adaptive time-step selection.

Three training simulations, |TPWL| = 3, are performed to construct the POD-TPWL model (the 3 runs provide a sufficient
number of snapshots for the POD basis), from which 𝓁 = 150 POD basis vectors are extracted. Of these, 90 correspond to
the saturation state variables and 60 to the pressure state variables. Figure 3 depicts the BHP controls �́� ∈ TPWL applied in
the primary training simulation (recall that this is the run used for linearization). These time-varying BHPs, as well as those
considered in the test runs, are meant to be representative of the BHP schedules that can arise during oil production optimization
computations. In such optimizations, the goal is to determine the time-varying BHPs that maximize an economic metric, or the
cumulative oil recovered from the reservoir.

We consider NBHP = 200 sets of BHP controls to construct the EMML training EMML and test sets EMML. As described
in Section 3.5, each of these sets is characterized by time-varying BHPs un, n = 1, … ,Nt, obtained by adding a unique
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FIGURE 2 Permeability field (logk, with k in md) and well locations (Model 1, from Isebor63)

FIGURE 3 Bottom-hole pressure (BHP) profiles for the primary training run

FIGURE 4 Test Case 1: bottom-hole pressure (BHP) profiles

(time-varying) random perturbation to the primary training BHP profiles. The time-varying BHPs for a particular case (Case 1)
are shown in Figure 4. The frequency of change in the primary training BHP schedule is every 200 days (Figure 3), while the
frequency of change in the BHP schedule for Case 1 is every 175 days (Figure 4).

We consider a total of Nf = 84 features, which include those listed in Table 1. After neglecting highly correlated features,
the total number of retained features is reduced to around 40 (note that each QoI may retain a different subset of features). If
we consider a memory of 𝜏 = 1, we obtain Nf = 84 × 2 = 168 features; this is reduced to about 64 after neglecting highly
correlated features.
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Based on extensive numerical experiments, we observed that the highest EMML accuracy was obtained on the test set EMML

using Approach 1 (ie, error-modeling Method 4 in Section 2.3.4 for the well-block pressure, and Method 3 in Section 2.3.3 for the
well-block saturation), a memory of 𝜏 = 1, Ntrain = 30 EMML training points, classification for determining regression-model
locality for production-well QoIs, and random forests (RF) for regression. While performing classification, we set 𝜀A = 0.05 and
𝜀C = 0.6. These values are somewhat heuristic, but they appropriately identify the basic behaviors (solution stages) we wish to
capture through classification. We compute the hyperparameters for random forests by minimizing the out-of-bag error. We first
report the numerical results corresponding to these best-case parameters. Then, in Section 4.3, we quantify EMML performance
for other choices of algorithmic parameters; for example, we assess the effect of using clustering to determine regression-model
locality, using only global regression models, and applying LASSO for regression. From Section 2.7, we recall that there are
2 possible applications of the EMML QoI-error prediction: (1) as a correction to the surrogate-model QoI, or (2) as an error
indicator to be used within the ROMES framework. Here, we consider the first application, and in Section 4.4, the second.

4.1 EMML for QoI correction: Test Case 1
We first present results for Test Case 1, represented by 𝝁1

test ∈ EMML. As will be described in Section 4.2, this case corresponds
to the median time-integrated POD-TPWL error in the test set EMML. Figure 5 reports results for the pressure for wells P1 and

FIGURE 5 EMML for sampled-state correction: Test Case 1. Well-block pressure and saturation predicted by various models. Best-performing
EMML parameters: Ntrain = 30, 𝜏 = 1, classification for determining regression-model locality, random-forest regression
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FIGURE 6 EMML for QoI correction: Test Case 1. Production and injection rates predicted by various models. Best-performing EMML
parameters: Ntrain = 30, 𝜏 = 1, classification for determining regression-model locality, random-forest regression

I3 and the saturation for well P1; note that these quantities associate with the sampled state that is corrected as an intermediate
step in Methods 3 and 4. Figure 6 presents several QoI; these correspond to the oil and water production rates in well P1, and the
water injection rate for well I3. We focus on wells P1 and I3, as they are the wells with the highest cumulative liquid production
and injection.

For Test Case 1, the POD-TPWL prediction (blue curve) for the saturation for well P1 has an error that is most noticeable
at around 500 days in Figure 5B. Similarly, the POD-TPWL error in the production rates is evident at around the same time
in Figure 6A,B. In Figure 5B, we observe that the EMML-corrected well-block saturation (red curve) demonstrates improved
accuracy around the time of water breakthrough (∼ 410 days). Similarly, in Figure 6, we see that the EMML-corrected flow
rates display better accuracy than the POD-TPWL results. The improvement is most apparent in the breakthrough prediction in
Figure 6B, and in oil production rate (Figure 6A) at a time of about 500 days.

4.2 EMML for QoI correction: additional test cases
We now present results for 2 additional test cases with control vectors 𝝁 ∈ EMML, which correspond to different POD-TPWL
prediction errors. We then assess EMML performance for an ensemble containing the entire EMML test set EMML (|EMML| =
170 cases).
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FIGURE 7 Test Case 2: bottom-hole pressure (BHP) profiles

FIGURE 8 EMML for QoI correction: Test Case 2. Production and injection rates predicted by various models. Best-performing EMML
parameters: Ntrain = 30, 𝜏 = 1, classification for determining regression-model locality, random-forest regression
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BHP schedules for Test Cases 2 and 3—represented by control vectors 𝝁2
test and 𝝁3

test, respectively—are shown in Figures 7
and 9. Test Case 2, for which ΔuP(𝝁2

test) = 0.54 and ΔuI(𝝁2
test) = 0.10, corresponds to a smaller perturbation in the BHPs relative

to the primary training run BHPs compared to that in Test Case 1 (ΔuP(𝝁1
test) = 0.68, ΔuI(𝝁1

test) = 0.23). It also corresponds
to lower POD-TPWL error compared to Test Case 1. The results for production and injection rates for Test Case 2 are shown
in Figure 8. The POD-TPWL error is again most noticeable at around 500 days for the oil and water production rates at well
P1. The correction is clearly evident in Figure 8A at around 500 days and in Figure 8B at around 500 and 1250 days. Slight
improvement in water injection rate (Figure 8C) is also apparent just before 200 days.

Test Case 3, withΔuP(𝝁3
test) = 0.46 andΔuI(𝝁3

test) = 0.32, corresponds to a higher perturbation in the injector BHPs compared
to that in Test Case 1, and it leads to a larger POD-TPWL error. The POD-TPWL error is again most evident at around 500 days
for both the oil and water production rates as shown in Figure 10A,B. These results are again significantly improved by the
proposed EMML-based correction. We note finally that the corrected solutions for the production and injection rates display
fluctuations at some times. This is because, when constructing the corrections, we treat each time step as independent, consistent
with the iid assumption.

To quantify EMML performance over the entire test set EMML of |EMML| = 170 cases, we define the following relative
time-integrated error measures for the POD-TPWL and corrected solutions:

ERL( j,) = 1|| ∑
q∈{(qj)d|d∈}

Nt∑
n=1

||𝛿n
q||Δtn

Nt∑
n=1

qnΔtn

× 100%, (34)

Ecorr( j,) = 1|| ∑
q∈{(qj)d|d∈}

Nt∑
n=1

|||𝛿n
q − 𝛿n

q
|||Δtn

Nt∑
n=1

qnΔtn

× 100%. (35)

Here, ERL denotes the relative average time-integrated error in the POD-TPWL solution and Ecorr designates the average
time-integrated error in the EMML-corrected solution. Note that  = P (with j = o or j = w) for production wells, while
 = I (with j = w) for injection wells.

Figure 11 displays the time-integrated errors for the entire set of 200 cases in the EMML training EMML and test EMML

sets. The cases are sorted by increasing POD-TPWL error. For each case in the ensemble, the figure reports the time-integrated
error in the POD-TPWL prediction (blue) and the EMML-corrected POD-TWPL predictions, which are further distinguished
by whether they correspond to cases in the EMML training set EMML (green) or test set EMML (red). Consistent with the
results presented in Section 4.1, the time-integrated errors for all test cases are reduced after application of the EMML-driven
correction. Test Cases 1, 2, and 3, discussed above are identified in Figure 11. These 3 test cases correspond to the 10th, 50th,
and 90th percentiles in ERL(o,P). Note that the time-integrated error in the EMML training data (green points) is small but
nonzero, which indicates that the random forest model r̂ss,i does not perfectly fit the data. This is intentional, as it prevents
overfitting, which can potentially lead to large errors in EMML test-case predictions.

Table 3 presents the median errors for the test set EMML results displayed in Figure 11. We observe that by applying the
EMML correction, we reduce the 3 errors, ERL(o,P), ERL(w,P), and ERL(w,I), by about 38% on average. Although we
achieve substantial improvements at certain time instances using EMML (as is evident in Figure 6A,B), small errors in time
persist. The EMML procedure reduces these errors but it does not completely eliminate them.

We note that one source of error in the EMML predictions is misclassification, which in turn leads to using the local regression
model from the incorrect category. The average misclassification error—defined as the ratio of the number of EMML test
samples misclassified to the total number of EMML test samples—over cases in the EMML test set EMML is 3% in this set of
experiments. The misclassification error is primarily from misclassifying samples whose actual category is B+ as B−, and vice
versa.

Finally, from the variable importance plots generated by the random forest regression model (see Breiman64 for more details
on variable importance plots), we observe some of the key features in this application to be P̃2dzn − P̃2d źi, P̃2d−1zn − P̃2d−1źi,
P̃2dzn−1 − P̃2d źi−1, P̃2dzn, P̃2d źi, (eT

2dΦ)(zn − zn−1) ∕ Δtn, un
d, PVIn, and ⟨zn,źi⟩||zn||2 ||źi||2 .



1818 TREHAN ET AL.

FIGURE 9 Test Case 3: bottom-hole pressure (BHP) profiles

FIGURE 10 EMML for QoI correction: Test Case 3. Production and injection rates predicted by various models. Best-performing EMML
parameters: Ntrain = 30, 𝜏 = 1, classification for determining regression-model locality, random-forest regression
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FIGURE 11 EMML for QoI correction: additional test cases. Relative time-integrated error in production and injection rates as defined by
Equation 22 for Ntrain = 30, 𝜏 = 1, classification + RF

TABLE 3 EMML for QoI correction: additional test cases.
Median value of the time-integrated errors in POD-TPWL and
corrected solutions over cases in EMML test set 𝝁 ∈ EMML

Method Ei(o,P) Ei(w,P) Ei(w,I)

POD-TPWL (i = RL) 4.5% 6.3% 6.6%
EMML correction (i =corr) 2.8% 4.4% 3.7%

4.3 EMML for QoI correction: alternative EMML parameters
For completeness, we now analyze EMML performance using different algorithmic parameters. Table 4 reports the median
time-integrated errors Ecorr( j,) over the 170 test cases corresponding to 𝝁 ∈ EMML. The EMML parameters used here
differ from the best-case parameters used in Sections 4.1 to 4.2. We vary the memory 𝜏, the number of high-fidelity simula-
tions Ntrain used to construct the EMML training data, and the method for determining regression-model locality clustering or
classification). For a detailed discussion of these results, we refer the reader to Trehan.65

We observe from Table 4 that the EMML-based corrections obtained using Approach 1 lead to more accurate results than those
obtained by Approach 2 (these 2 approaches are defined in Section 3.3). Additionally, a decrease in the number of high-fidelity
simulations (Ntrain) used to build the EMML training dataset leads to a noticeable decrease in accuracy. Reduced accuracy is also
observed when LASSO regression is used instead of random-forest regression. In addition, using classification (a supervised
machine learning technique) to determine regression-model locality prior to constructing local RF models performs better than
the use of clustering (an automated unsupervised learning approach). Even in the absence of using local regression models
(which adds complexity to the EMML method), EMML with a global error model still provides improved accuracy relative to
POD-TPWL, although more accurate results are achieved when classification is used to determine locality. We note finally that
the impact of memory is very small for this test set.
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TABLE 4 EMML for QoI correction: alternative EMML parameters. Median value of the
time-integrated errors in POD-TPWL and corrected solutions over cases in EMML test set
𝝁 ∈ EMML with different EMML parameters

Ei(o,P) Ei(w,P) Ei(w,I)
Method (%) (%) (%)
POD-TPWL (i = RL) 4.49 6.34 6.62
EMML correction (i =corr)
Approach 𝜏 Ntrain Locality Regression

1 1 30 classification RF 2.78 4.39 3.67

1 0 30 classification RF 2.79 4.38 3.68

1 1 15 classification RF 3.58 5.63 4.12

1 1 30 classification LS 3.33 5.67 11.32

1 1 30 clustering RF 3.23 5.22 3.68

1 1 30 none RF 3.26 5.18 3.67

2 1 30 classification RF 2.78 5.62 11.06

FIGURE 12 Relationship between the true time-integrated error (h̄(𝛿q; o,P), h̄(𝛿q;w,P), and h̄(𝛿q;w,I)) and the EMML-approximated
time-integrated error (h̄(𝛿q; o,P), h̄(𝛿q;w,P), and h̄(𝛿q;w,I)). EMML parameters: Ntrain = 30, 𝜏 = 1, classification for determining
regression-model locality, random-forest regression. The red line corresponds to the prediction associated with the EMML-approximated error
alone; this illustrates the bias in the EMML-approximated error [Colour figure can be viewed at wileyonlinelibrary.com]

4.4 EMML as an error indicator for ROMES
We now consider the second application of the EMML error model: as an error indicator for the ROMES method.19 In particular,
we apply the framework proposed in Section 2.7.2 with the following scalar-valued function of the surrogate QoI errors:

http://onlinelibrary.wiley.com/
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h(𝛿1
q , … , 𝛿

Nt
q ) =

Nt∑
n=1

|𝛿n
d|Δtn

Nt∑
n=1

(
(qn)RL + 𝛿n

d

)
Δtn

. (36)

We also denote the average value of h associated with QoI errors 𝛿q for a given phase j and a specified set of wells ̄ as

h̄(𝛿q; j, ̄) = 1
̄

∑
q∈{(qj)d|d∈}

h(𝛿1
q , … , 𝛿

Nt
q ) × 100%. (37)

Figure 12 displays cross-plots of the true time-integrated error (h̄(𝛿q; o,P), h̄(𝛿q;w,P), and h̄(𝛿q;w,I)) versus the
EMML-approximated time-integrated error (h̄(𝛿q; o,P), h̄(𝛿q;w,P), and h̄(𝛿q;w,I)). Although scatter is apparent, the rela-
tionship is essentially linear. However, note that h̄(𝛿q; j, ̄) is generally greater than h̄(𝛿q; j, ̄), which leads to a systematic bias.
Thus, applying the EMML-computed quantities h̄(𝛿q; o,P), h̄(𝛿q;w,P), and h̄(𝛿q;w,I) to predict their “true” counterparts
will be biased; this is reflected by the red line in Figure 12, which corresponds to the prediction if the EMML-computed quan-
tity alone is applied for prediction. Note that this bias is not trivial to fix within the regression method itself, as the regression
was constructed for predicting time-instantaneous errors, while the observed bias is present for time- and well-averaged errors.

As described in Section 2.7.2, we can address this issue using the ROMES method.19 This technique applies Gaussian-process
(GP) regression to model the (generally unknown) average true error h̄(𝛿q; j, ̄) using an error indicator, which (in this case)
corresponds to the (computable) average error predicted by EMML h̄(𝛿q; j, ̄). To construct the GP, we use 15 additional
high-fidelity and POD-TPWL simulations for parameter instances corresponding to ROMES ⊂ EMML, ie, |ROMES| = 15. These

FIGURE 13 Postcorrected time-integrated EMML results using GP
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simulations provide the ROMES training data {(h̄(𝛿q(𝝁); j, ̄), h̄(𝛿q(𝝁); j, ̄))}𝝁∈ROMES
. We then construct a GP using the DACE

package66 with a first-order-polynomial mean function, and a Gaussian covariance function.
Figure 13 shows the resulting GP. This figure displays the Gaussian process with a 90% confidence interval (shaded region),

the true average error (black), the average error predicted by EMML alone (red points), and the average error predicted by EMML
after postprocessing with ROMES (purple points). Most importantly, these results show that the (mean) EMML prediction after
ROMES postprocessing is significantly more accurate (ie, closer to the true errors) than the EMML prediction alone. Further,
the true time-integrated error for the majority of the test cases lies within the 90% confidence interval predicted by the GP;
this demonstrates the importance of a statistical prediction rather than a deterministic prediction, as the confidence interval
quantifies the prediction uncertainty. We thus conclude that the method proposed in Section 2.7.2 is effective at modeling
time-integrated errors in this application.

4.5 Computational costs
We first discuss the computational costs incurred by POD-TPWL and EMML. All reported timings were obtained on a machine
with dual E5520 Intel CPUs (4 cores, 2.26 Ghz) and 24 GB memory using a Matlab implementation of the high-fidelity and
surrogate models and an R67 implementation of EMML. The offline computational costs for POD-TPWL entail (1) executing|TPWL| = 3 high-fidelity simulations—which can be done in parallel—for 𝝁 ∈ TPWL; the cost of a single high-fidelity
simulation is 370 seconds, and (2) assembling POD-TPWL operators via Equation 31, which consumes 23.5 seconds.

The offline computational costs for EMML training entail (1) executing |EMML| = Ntrain = 30 high-fidelity and POD-TPWL
simulations (in parallel) for 𝝁 ∈ EMML; the POD-TPWL solution takes only 0.5 seconds, which constitutes a speedup of
approximately 700 relative to the HFM, (2) constructing a classification model for each of the |P| = 3 producer wells d ∈ P;
this consumes 1010 seconds per producer well, and (3) constructing a random-forest regression model for each of the 9 QoI
defined in Equation 24; this consumes 412 seconds per regression model. The total offline cost of steps 2 and 3—assuming
serial computation—is 6735 seconds. We note that this is approximately 18 times costlier than a single high-fidelity simulation.
Elapsed timings can be readily reduced through use of parallel processing (each QoI can be treated by a different processor).
The ratio of offline costs relative to HFM simulation cost will be smaller for larger-dimensional and more complex HFMs, as
the EMML training cost in steps 2 and 3 is independent of the complexity of the HFM. However, the EMML training cost does
scale linearly with the number of QoI, assuming serial processing.

In terms of online costs, the POD-TPWL simulation consumes only 0.5 seconds (as mentioned above), and the online EMML
error prediction takes about 3 × 10−4 seconds for querying the regression model. Thus, online costs are very small relative
to offline costs. We note finally that production optimization computations in this setting may require O(100 − 1000) flow
simulations, so an offline cost of O(10) HFM simulations, as required by the EMML-based framework, represents an acceptable
overhead.

5 CONCLUDING REMARKS

In this work, we introduced a general method for EMML. We applied the EMML framework for modeling the error introduced
by surrogate models of dynamical systems. The framework uses high-dimensional regression methods from machine learning
to map a set of inexpensively computed error indicators (features) to a prediction of the (time-dependent) surrogate-model
quantity-of-interest error (response). The method requires first constructing an EMML training dataset by simulating both the
surrogate model and the HFM for some instances of the input parameters. In particular, we proposed

• four different methods for modeling the error (Section 2.3),
• two methods (classification and clustering) for determining the notion of locality that is employed to construct local

regression models (Section 2.5),
• two techniques (random forests and LASSO) for performing regression (Section 2.6), and
• two applications of the resulting error models: as a correction to the surrogate-model QoI prediction, and as a way to

model functions of the QoI error using the ROMES method (Section 2.7).

We specialized the method to one particular application: subsurface-flow modeling with a POD–TPWL reduced-order model
as a surrogate. For this application, we proposed specific EMML method ingredients, such as particular choices for error
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modeling (Section 3.3), feature design (Section 3.4), training and test data (Section 3.5), and classification features to use for
determining regression-model locality (Section 3.6).

In the numerical experiments, we observed that the EMML method performed the best using the following algorithmic
parameters: error-modeling using Approach 1, memory 𝜏 = 1, Ntrain = 30 simulations to train the EMML model, classification
to determine regression-model locality, and random-forest regression. When the EMML error models are used as a correction to
the surrogate-model prediction, we demonstrated improved accuracy in the output quantities of interest relative to the original
POD-TPWL surrogate model for a large number of test cases (Sections 4.1-4.2). When the EMML error models are used to
model functions of the QoI error via ROMES, we observed that the EMML prediction—when combined with a ROMES-based
Gaussian-process model—produced an accurate prediction with statistical confidence intervals. It is important to note, however,
that the EMML offline cost is not negligible (Section 4.5), as it entails (1) constructing the EMML training dataset, which
requires executing Ntrain high-fidelity and surrogate-model simulations, (2) determining regression-model locality for every
QoI, and (3) constructing a regression model for every QoI. Thus, this framework is only appropriate for use in many-query
problems such as optimization and uncertainty quantification.

The EMML framework provides a general error modeling methodology for surrogate models of dynamical systems; it assumes
only that the surrogate produces a large set of features that can be mined for potential error indicators. Thus, it is applicable
to a wide variety of surrogates, such as reduced-order models (considered in this work) and those presented in literature,61,68-71

and coarsened models, for example. The application of EMML with upscaled (effectivized) subsurface flow models, within the
context of uncertainty quantification, was considered by Trehan.65 Future work should be directed toward modeling error with
other types of surrogate models (for a range of applications), and also for modeling errors introduced while performing geolog-
ical parameterization.72,73 Algorithmic improvements within the EMML framework could also be considered. For example, our
approach entails univariate regression for each QoI considered; future work could investigate the use of multivariate regression
that accounts for interactions between the QoI. It may also be worthwhile to explore other regression methods, such as artificial
neural networks with long short-term memory.74 However, our initial (and ongoing) investigations into the use of deep artificial
neural networks for constructing error models demonstrate that the required training time is very large relative to that incurred
by high-fidelity simulations, so other approaches should also be considered.
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APPENDIX A: RANDOM-FOREST REGRESSION

Random forest is a supervised machine learning technique based on constructing an ensemble of decision trees; it can be used
for both classification and regression. Here, decision trees are constructed by segmenting the feature space along (canonical)
directions corresponding to individual features. In Figure A1, which is adapted and modified from James et al,5 we plot the
(color-coded) true error—which is the response we aim to predict—as a function of 2 features corresponding to synthetic
training data.

As shown in Figure A1A, segmentation of the feature space involves splitting the domain into regions R1 and R2. This is
achieved by computing the feature index j ∈ {1, … ,Nf} and cutpoint s ∈ R corresponding to the segmentation that minimizes
the residual sum of squares ∑

n,k∶f n(𝝁k)∈R1( j,s)
(𝛿n(𝝁k) − 𝛿R1

)2 +
∑

n,k∶f n(𝝁k)∈R2( j,s)
(𝛿n(𝝁k) − 𝛿R2

)2. (A1)

Here, we define feature-space regions R1( j, s) = {f|fj < s} and R2( j, s) = {f| fj ≥ s}, and we denote the mean value of
the response across the training samples in Rk as 𝛿Rk ∈ R, k = 1, 2. This segmentation is performed recursively, as shown
in Figure A1B. Because recursive segmentation can be summarized in a tree structure as depicted in Figure A2, this type of
approach is known as a decision-tree method. The values assigned to leaves of the tree correspond to the response predicted
in the feature-space region associated with those leaves, which is the mean value of the response across training data in that
region. Note that segmenting the feature space in this way enables nonlinear interactions among the features to be captured.

FIGURE A1 Schematic of segmentation of the feature space using a decision tree. Figure adapted and modified from James et al.5

FIGURE A2 Regression tree [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE A3 Bootstrapping of the data [Colour figure can be viewed at wileyonlinelibrary.com]

Unfortunately, decision-tree models often exhibit high variance and low bias, which can result in overfitting the training data.5

To resolve this problem, random-forest regression constructs an ensemble of decision trees, and the prediction corresponds to
the average prediction across all trees in the ensemble. While constructing a given decision tree, the random-forest technique
considers only a randomly selected subset of the feature indices as candidates for performing a split. This randomization serves
to decorrelate the trees, thereby reducing the variance incurred by averaging the predictions from different trees, which acts to
improve prediction quality.

Additionally, random-forest regression grows trees on a bootstrap-sampled version of the training data. Bootstrapping
(a resampling technique involving sampling with replacement) is illustrated in Figure A3A for a data set containing 5 samples.
To construct the first decision tree, the random-forest technique samples, with replacement, 5 training samples from the data
shown in Figure A3A. However, because of sampling with replacement, it is probable that some samples in the resulting data
set are repeated, as shown in Figure A3B. Bootstrapping further assists in variance reduction without increasing the bias.

While random forests demonstrate improved accuracy relative to a single decision tree, they lead to a loss of interpretation. We
note that the performance of random forests can be improved by various mechanisms, such as pruning or recursively dropping
the least-important features. For additional details on random forests, see Breiman et al.64

APPENDIX B: LASSO REGRESSION

Least absolute shrinkage and selection operator (LASSO) is a regression method that fits a linear model to the feature-to-error

mapping, ie, 𝛿n(𝝁) = 𝛽0 +
Nf∑
j=1

f n
j (𝝁)𝛽j + 𝜖, n = 1, … ,Nt and 𝛽j ∈ R, j = 0, … ,Nf, while reducing the number of nonzero

coefficients. It does so by computing coefficients 𝛽 j, j = 0, … ,Nf that minimize an objective function composed of the sum of
squared errors and an L1-penalty on the coefficients

Nt∑
n=1

Ntrain∑
k=1

⎛⎜⎜⎝𝛿n(𝝁k) − 𝛽0 −
Nf∑
j=1

f n
j (𝝁

k)𝛽j

⎞⎟⎟⎠
2

+ 𝜆

Nf∑
j=1

||𝛽j|| , (B1)

where 𝜆 ∈ R is a penalty parameter, and larger values of 𝜆 promote sparsity in the computed coefficients. [Correction added
on 20 November 2017, after first online publication: vertical bars were missing in Equation B1 and have since been added]

The value of 𝜆 is typically chosen by k-fold cross validation, which is a process that randomly partitions the training data into
k subsamples of equal size. One subsample is withheld while a linear model is constructed using the remaining k−1 subsamples.
The model is then tested on the withheld sample, and the prediction errors are recorded. To reduce variability, the process is
repeated k times, with a different subsample withheld each time. Finally, the prediction errors are averaged, and this average is
referred to as the cross-validation error. To determine the optimal value of 𝜆 in practice, we compute the cross-validation error
on only a subset of candidate values for 𝜆 and select the value yielding the smallest cross-validation error.
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