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Correlating geologic and seismic data with unconventional resource
production curves using machine learning

Ryan Smith!, Tapan Mukeriji?, and Tony Lupo®

ABSTRACT

Predicting well production in unconventional oil and gas
settings is challenging due to the combined influence of en-
gineering, geologic, and geophysical inputs on well produc-
tivity. We have developed a machine-learning workflow that
incorporates geophysical and geologic data, as well as en-
gineering completion parameters, into a model for predict-
ing well production. The study area is in southwest Texas in
the lower Eagle Ford Group. We make use of a time-series
method known as functional principal component analysis
to summarize the well-production time series. Next, we use
random forests, a machine-learning regression technique, in
combination with our summarized well data to predict the full
time series of well production. The inputs to this model are
geologic, geophysical, and engineering data. We are then able
to predict the well-production time series, with 65%—76% ac-
curacy. This method incorporates disparate data types into a
robust, predictive model that predicts well production in un-
conventional resources.

INTRODUCTION

A key aspect of optimizing production in unconventional resour-
ces is selecting sites to drill that have a relatively low risk of pro-
ducing below the economic threshold. This process can be more
challenging in unconventional resource plays because the science
behind what geologic or geophysical traits make a play more likely
to be economic are not well-established. Here, we propose using
machine-learning methods, which establish relationships between
available engineering, geologic, and geophysical data and well

performance. This could enable us to quantify the risk of drilling
a well that is not economic, avoiding potential losses.

Our objective was to use geologic, seismic, and well-completion
data to predict well performance and to develop a more intuitive
understanding of the geologic and geophysical drivers for well per-
formance. In our prediction, we used as input traditional geologic
data sets, such as porosity, total organic carbon (TOC), and water
saturation, as well as seismic attributes. We developed a framework
for how seismic attributes could be combined with geologic and
well-completion data to predict well performance. This framework
could be used in future studies to include additional attributes re-
lated to faults, such as coherence.

The curvature attribute, which highlights synclines and anti-
clines, is thought to be a proxy for fractures (Roberts, 2001). Since
the onset of unconventional resource production, natural fractures
have been thought to form “sweet spots” for drilling, where en-
hanced fracture permeability boosts production. However, the hy-
pothesis that curvature attributes can be used to identify enhanced
areas for production remains poorly tested. To test this hypothesis,
we compared curvature data, geologic data, and completion param-
eters with well-production data.

To compare these diverse data sets with well production, we
needed to summarize well-production time series. Many methods
exist that can transform a time series into relatively few values.
We chose to use functional principal component analysis (FPCA).
This method combines functional data analysis (FDA) with princi-
pal component analysis (PCA). We chose to use the method because
it can handle noisy data, and has the flexibility to fit time series that
do not have seasonal components, which is the case with our time
series. FPCA has been performed before on production curves in un-
conventional shale resources by Grujic et al. (2015), Grujic (2017),
and Cai et al. (2017), who used predicted well production with a fo-
cus on engineering parameters. We implemented this method, but
with a focus on geologic and geophysical parameters while still in-

Manuscript received by the Editor 20 March 2018; revised manuscript received 22 October 2018; published ahead of production 18 December 2018; pub-

lished online 01 March 2019.

Missouri University of Science and Technology, Department of Geosciences and Geological and Petroleum Engineering, Rolla, Missouri, USA. E-mail:

smithryang @mst.edu.

Stanford University, Department of Energy Resources Engineering, Stanford, California, USA. E-mail: mukerji @stanford.edu.
3SM Energy Company, Denver, Colorado, USA. E-mail: tlupo@sm-energy.com.

© 2019 Society of Exploration Geophysicists. All rights reserved.

039


http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2018-0202.1&domain=pdf&date_stamp=2019-03-01

Downloaded 03/25/20 to 73.151.200.131. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

040 Smith et al.

cluding engineering parameters. This method enabled us to summa-
rize each decline curve with only two values, the scores for the first
and second functional principal components (FPCs). We then devel-
oped a model that predicts these scores (from which decline curves
can be generated) given geologic, seismic, and well-completion data
using random forests, a machine-learning technique that accounts for
nonlinear interactions between multiple variables on the outcome.

Ruths et al. (2017) implement a method that predicted pressure
response during well completions using seismic data in random for-
ests, but did not predict well production. This study builds on pre-
vious methods by applying a random forest model to predict
production curves. Seismic data have not been previously incorpo-
rated into predictions of well production in this framework, and
show potential for improving the method. Furthermore, we discuss
relationships between input parameters and total production, as well
as rate of production decline. Because the well-production rate is
greatly influenced by the presence of fractures, our research helps
to provide a more intuitive understanding of how fractures, esti-
mated with geophysical data, and matrix porosity, interpolated from
borehole logs, influence well production.

Using the method outlined above, we were able to predict total
production using geologic, geophysical, and well-completion data
with a correlation coefficient (#2) of 0.65-0.76. Many expected re-
lationships, such as the positive impact of high porosity and low
water saturation on total production, were observed. Some relation-
ships that were not expected, such as a positive correlation between
stratigraphically higher curvature and production, were also ob-
served. Our results suggest that this method, when properly calibrated
and used with good training data, could have broad applicability in
unconventional resource plays.
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In the “Study area” section, we give an overview of the study area;
in the “Data preparation” section, we describe the data preparation,
including FDA of the production curves and seismic curvature
attribute generation; in the “Predicting well production™ section,
we outline the random forest methods used for predicting production
curves. In the “Discussion” section, we interpret the results; and
finally, we offer our conclusions in the “Conclusion” section.

STUDY AREA

Our study area is in southwest Texas, and the objective of our
analysis is the Late Cretaceous shales and marls of the Eagle Ford
Group, a key element of the unconventional shale oil play that has
been actively drilled in recent years (Figure 1a). A seismic cross
section along the area of interest is shown in Figure 1c, with the
location of the cross section shown in Figure 1b.

The portion of the Eagle Ford analyzed in this study resides along
the westernmost portion of the known productive fairway in Webb
and Dimmit counties. Here, the Eagle Ford was deposited in the Mav-
erick Sub Basin, where the thickest deposits (150-200 m) of produc-
tive Eagle Ford exist. The Eagle Ford was deposited in anoxic-to-
dysoxic conditions during Cenomanian and Turonian ages of the Late
Cretaceous. The producing zone is often subdivided into the Upper
and Lower Eagle Ford. The Lower Eagle Ford was deposited con-
formably upon the Buda formation. The Upper Eagle Ford is overlain
by the Austin Chalk, which is overlain by the Anacacho Limestone;
both are brittle carbonate formations. The Lower Eagle Ford consists
of approximately 60 m of dark black, 2 wt%—8 wt% TOC mudstones
that are overlain by approximately 150 m of Upper Eagle Ford marls
with TOC between 0.5 wt% and 4.65 wt%. In the Lower Eagle Ford,
the average Sw is 0.17 with porosities averaging
11%. The Lower Eagle Ford is underlain by the
Buda Limestone, another brittle carbonate forma-
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Figure 1. (a) Generalized stratigraphic column showing formation of interest, the Lower
Eagle Ford, (b) locations of wells used in study, and (c) seismic section with relevant hori-
zon tops stratigraphically close to the Lower Eagle Ford. Horizon tops shown are Anacacho
(A1), Austin Chalk (A2), Upper Eagle Ford (UEF), Lower Eagle Ford (LEF), and Buda (B).
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well. Geologic information, seismic data, and pro-
duction decline curves were made available by the
company we collaborated with. We performed cur-
vature calculations on the seismic data to transform
the data into attributes relevant to our study.
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Functional data analysis and principal component
analysis

The production of all wells in our study area with at least 1.5
years of data, as well as the mean production across all wells, are
shown in Figure 2. The production at each well is complex, time-
varying, and contains a significant amount of noise. Comparing
geologic and geophysical data (values along a well bore) with produc-
tion curves (time series) because they are normally viewed is a diffi-
cult process because the data types are so different. The production
curves are time-series functions, whereas the geologic and geophysi-
cal attributes are not time dependent, but are spatially distributed along
the well bore.

One could note wells with steeper decline curves, and hypoth-
esize that it is related to permeable fracture flow that drains more
quickly than a typical matrix flow. However, identifying wells with
these production attributes is normally a subjective process. Our
objective was to use a method that could summarize the key trends
in well-production time series with relatively few values. We chose to
use FPCA, which first smooths the time series, then summarizes its
key components, or principal components. By analyzing well-decline
curves with FPCA, we reduced the dimensionality of a decline curve
time series from approximately 500 (days) to two principal compo-
nent scores, or coefficients. One of these scores was correlated (with a
correlation >0.99) with total production, and the other score was
correlated with an initial spike followed by a rapid drop-off in pro-
duction. This pattern in production is indicative of fracture-domi-
nated flow.

This correlation potentially makes comparison with curvature
more natural. With the lower dimensional representation of produc-
tion curves, one can compare each dimension (principal component)
with geologic and geophysical data statistically to determine the cor-
relation, or lack thereof. Here, we used a modification of the FPCA
method developed by Grujic (2017).

FDA (Ramsay, 2000) is a data-smoothing technique that uses a
series of basis functions ¢ () to describe a time series f(f):

k
F0) =" ai(0), 1)
i=1

where a; are the coefficients of the basis functions. Thus, in this
method, a time series is defined by the coefficients, a; of the basis
functions. To reconstruct the time series, one plugs the coefficients
into equation 1. This approximation results in a smoother time
series, as the basis functions describing the time series are inher-
ently smooth.

There are several choices for the basis functions. The two most
common are Fourier basis functions, for seasonal data, and spline
basis functions, for data that are not seasonal. We chose to use
spline functions because there is no seasonal or recurring pattern in
decline curves. Because production curves can have unexpected
jumps that are not meaningful to the overall trend, FDA was helpful
in removing data that are less meaningful. For a more in-depth treat-
ment of FDA, see Ramsay (2006).

We performed FDA using the FDA MATLAB package (Ramsay
et al., 2009). The number of basis functions that are needed to ac-
curately fit a time series depends upon the nature of the time series
and is typically determined with trial and error. We used 20 basis
functions to fit the decline curves. We chose this value because it

was within the range used successfully by Grujic et al. (2015) and it
provided a reasonable fit with the data.

Only wells that had at least 1.5 years of production data were
included in our analysis, and of these wells, only the first 1.5 years
of production data were included. To prepare the production data for
analysis, wells with significant turn-off time and other outliers needed
to be removed. We also removed outliers based on histograms of
mean choke size during production and total change in choke size
during production. We did this because varying the choke size during
production, or having an anomalously high or low choke size, alters
the timing of well production and makes wells difficult to compare
with each other. This brought our data set down from 136 to 125
wells. We also removed additional outliers in later steps, which are
outlined below.

After smoothing our data with FDA, we then analyzed the fit of
the smoothed production time series to the original time series.
From this visual inspection, we identified outliers in approximately
10% of the data. The outliers were generally determined based on
unexpected and abnormal jumps in production later in the life of the
well, indicating a significant change in choke size or pressure that
had been missed by our initial search for outliers. This left us with
97 wells.

After performing FDA, a smoothed version of each time series
was described by the coefficients a; of the basis functions ¢;(¢). We
used PCA (Jolliffe, 2002) on the functional data coefficients to
reduce the dimensionality of the problem. PCA reduces the dimen-
sionality by transforming a data set into » number of principal com-
ponents, where 7 is less than the original dimension of the data set.
These principal components are linearly uncorrelated. Each time
series is then described by the coefficients, or scores, on each prin-
cipal component. Similar to FDA, the original time series can be
reconstructed by multiplying the coefficients by the principal com-
ponents, then summing them. For a more in-depth treatment of
PCA, see Jolliffe (2002).

The first three principal components explained the 82%, 10%,
and 3% of the variance in well production, respectively. Because
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Figure 2. Production of all wells in our study area with at least 1.5
years of production (transparent lines), and the mean production
across all wells (the dark thick line).
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decline curves have similar patterns from well to well, we were able
to account for 91% of the variability in the decline curves with the
first two principal components. We did not consider the third prin-
cipal component in our analysis because it explained so little vari-
ance in well production. The first and second principal components
are shown in Figure 3.

From the FPCA analysis, each well has two scores, or coeffi-
cients, that can be used to reconstruct its time series. The first score

—— Average production
------- First functional principal component
—-—+ Second functional principal component
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0.05 1
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Figure 3. Average production (the solid line), first FPC (dashed
line), and second FPC (the dashed- dotted line). Note that the first
principal component has mean >0, meaning that positive values re-
sult in greater overall production, whereas the second principal
component has mean = 0, meaning that positive values have no cor-
relation with total production.

s is associated with the first FPC (FPC;, shown in Figure 3 as a
dashed line). The second score s, is associated with the second FPC
(FPC,, shown in Figure 3 as a dashed-dotted line). Production
decline curves P are reconstructed using FPCs and their scores as
follows:

P = mean + s,FPC, + 5,FPC,, 2)

where mean is the mean production across all wells (shown in Fig-
ure 3 as a solid line). As shown in Figure 3, FPC, is positive through
the entire time series, so a higher s; results in higher overall pro-
duction. The second principal component shows that for higher
scores, the production starts higher but eventually drops to negative
values at approximately 200 days, so a higher s, results in higher
production initially, then lower production after approximately 200
days. Because this is often thought to be the effect of high-per-
meability, low-storage-fracture networks, this result supports the
idea that principal components could be used to indicate areas that
are more or less fractured. In addition to natural fractures, however,
these production declines could also be related to how the wells
were completed, and how closely spaced they are — for example,
steeper declines could also be related to a nearby well being turned
on. Figure 4 shows the fit of a typical well decline time series with
two principal components. Figure 4b shows a clear trend of decreas-
ing FPC scores (first FPC) from southwest to northeast (shallow to
deep), representing decreasing production as the basin gets deeper.

Curvature attribute generation

Curvature is a seismic attribute that is calculated by taking the
second derivative of seismic reflectors (Bergbauer et al., 2003; Al-
Dossary and Marfurt, 2006). This highlights zones with anticlines
(negative curvature) and synclines (positive curvature). Because areas
with anticlines or synclines are prone to have more fractures, curva-

ture has also been used as an approximate proxy
for fracture intensity in the subsurface. This tech-
nique has been used for more than a decade by the
oil and gas industry (Roberts, 2001; Sigismondi
and Soldo, 2003). However, there remains a great
deal of uncertainty as to whether natural fractures
highlighted by curvature volumes enhance pro-
duction or deter it. Gale et al. (2007) note that
natural fractures can either enhance permeability,
increasing well production, or connect the reser-
voir to formations with water, thus hurting well
production. The effectiveness of natural fractures

FPC2 is largely dependent on the fracture size and the
geologic conditions at the zone of interest.

The curvature attributes have been generated
using software developed by the Attribute-As-
00 sisted Seismic Processing and Interpretation con-

sortium (Al-Dossary and Marfurt, 2006). The
-0.3 curvature attribute was processed on the ampli-
tude seismic volume within an approximately
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Figure 4. (a) Observed decline compared with that predicted by two principal com-
ponents. (b) Map of scores on the first FPC. (c) Map of scores on the second FPC.
For (b and c), the well trajectories are shown. Each well has two scores (FPC1 and
FPC2). (b) The FPC1 score for each well and (c) the FPC2 score for each well.

0.5 s window of the zone of interest. The seismic
data cover an area of approximately 260 km?.
The locations of the wells used in the study
are shown in Figure 1. To compute the curvature,
we followed the procedure described by Al-Dos-
sary and Marfurt (2006). First, we computed the
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dip direction of the reflectors (first spatial derivative). The curvature
was computed by taking the derivative of the dip direction. Because
derivatives increase noise, we applied a long-wavelength filter to
reduce noise.

Geologic and geophysical data extraction

We extracted geologic, geophysical, and engineering data along
the well bores. A summary table of the variables extracted along
each well is shown below. Note that the seismic curvature attributes
were extracted along specific horizons, which did not necessarily
represent the vertical location of the well bore. For example, along
each well bore, the absolute value of the curvature of the Eagle Ford
and Anacacho time horizons were extracted (see Figure 5). We ex-
tracted the absolute value of curvature because we were interested in
the positive (synclines) and negative (anticlines) curvature anomalies
because both should be related to fractures. We initially extracted a
zone surrounding the well, but we found that the predictions were
better when only extracting the data along the well bore. Typically,
the well bores closely track the Eagle Ford horizon, so this horizon
provided a good estimate of the geophysical properties along the well
bore. The Anacacho is located stratigraphically higher than the tar-
geted Eagle Ford, and it could highlight features that are present but
subseismic (not detectable) in the Eagle Ford. For instance, a fracture
clearly visible from seismic data in the Anacacho could propagate
into the Eagle Ford with diminishing magnitude, so that it is not seis-
mically resolved. We initially included other horizons as well, but we
found that they did not significantly impact the results. After
extracting the values along the well bores, we took their median value
as the key summary statistic for each well. In our exploratory studies,
we included the 10th and 90th percentiles of the values extracted
along the well bore, but we found them generally to be less inform-
ative. To simplify the relationships between curvature and produc-
tion, and to avoid using numerous correlated predictor variables,
in our final analysis presented in this paper, we only used the median
values.

We included geologic inputs that were either known to or hypoth-
esized to relate to well production: porosity, water saturation, TOC,
geothermal gradient, isopach, total vertical depth, and zone. Zone
referred to the principal formation that was drilled into (e.g., Upper
Eagle Ford, Lower Eagle Ford, and mixed). We did not include the
“x” and “y” location of the wells as input because the location alone
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Figure 5. A synthetic example of how summary statistics for curva-
ture attributes on (a) the Eagle Ford and (b) the Anacacho Formations
were calculated. The black line overlain on the curvature maps is only
a schematic and does not denote an actual well location.

is not indicative of any physical properties. The total vertical depth
represented the “z” location of the wells. The depth of the wells is
related to several geologic parameters that are otherwise difficult to
estimate, such as pressure and maturity. In this study, we attempted
as much as possible to relate physical properties to well production,
although in the case of the total vertical depth this was not possible.
As with the seismic attributes, we used the median value along each
well bore as the summary statistic of each variable for each well.

We included engineering parameters that were also either known
or believed to impact production: lateral length, which is the length
of the drilled well; fluid per foot, which is the amount of fluid used
to stimulate the reservoir per foot of well length; stage spacing,
which is the distance between each reservoir stimulation; and choke
size (starting value and trend over time), which is used to control the
well production rate.

PREDICTING WELL PRODUCTION
Random forest models

With the data along the well bores extracted, we created random
forest models (Breiman, 2001) to predict the principal component
scores from the predictor variables. Random forests or random de-
cision forests are an ensemble-based statistical method for classifi-
cation and regression. They combine a large number of decision
trees that are trained using the training data to predict the response.
An example decision tree is shown in Figure 6. In this example, we
are predicting barrels of oil equivalent (BOE) produced per lateral
foot on a horizontal well after 1.5 years. The predictor variables are
water saturation, porosity, and TOC. At each node (box), we move
to the right or left based on the value of the variable at that node. For
example, if the water saturation is less than 0.4, we move to the left.
At the bottom is a prediction of BOE/ft after 1.5 years based on the
values of the predictor variables.

Decision trees are popular for machine learning (Hastie et al.,
2001) because they are invariant under scaling and other transforma-
tions of the predictor values, meaning that variables do not need to be
scaled prior to analysis, as is the case with many other machine-learn-
ing algorithms. Decision trees are also robust to inclusion of irrel-
evant features, and the models are inspectable and interpretable.
However, single decision trees have high variance and are not very
accurate being prone to overfitting. Using an ensemble of decision
trees helps to correct for overfitting that can happen when only a sin-
gle decision tree is trained. Random forests, by averaging over an
ensemble of decision trees, help to reduce the variance and increase
the accuracy of the final model, but with some loss of interpretability

water saturation

N
™
Y N
()

porosity
A N
S \\o’w J6
BOE/ft after =
1.5yrs 200 150 140 100

Figure 6. Simple example of a decision tree.
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as compared to a single decision tree. We created two random forest
models, one for each principal component score. We chose to predict
the two principal components separately because they are not corre-
lated (Figure 7).

The predictors in Table 1 were used in both models. Random for-
ests have the advantage of handling data from a variety of sources,
and at different scales, efficiently. They also provide a best estimate
(mean of all trees), as well as a distribution (ensemble of all trees) for
each estimate, allowing us to assess the uncertainty with each pre-
diction.

As the number of trees in the random forest increases, the error
decreases, up to a certain number of trees (approximately 200), at

0.4 .

9] * o '. ¢ . °
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3 o ° *—s ® .
-0.4 - ’ ? - .
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Figure 7. Crossplot of scores on the first and second FPCs. Note
that there is no correlation between the two FPCs (r> = 0.01).

Table 1. Variables used in random forest model.

which the increase in trees has a negligible effect. We used 500 trees,
which in most studies is more than sufficient (Hastie et al., 2001). We
tuned the models for the parameter mtry, which is defined as the num-
ber of variables randomly sampled as candidates at each node (Brei-
man, 2002). The tuning process was performed with the R package
“randomPForest,” which evaluated the mean-squared error (MSE) on
out-of-bag (not used in the analysis) data points, finding the value of
mtry that resulted in the lowest possible MSE. The resulting values of
mtry for the models predicting the first and second scores on FPCs
were 8 and 8, respectively.

Because these models are complex, their interpretation is not al-
ways straightforward. One way of interpreting random forests is
through variable importance metrics. A popular variable importance
metric is the degree to which permuting (randomly shuffling) any
given variable increases the MSE of the prediction. Because permut-
ing the variable is essentially just feeding noisy data into the model,
variables which increase the MSE significantly when permuted are
considered more important, whereas variables which have little effect
on the error are considered less important. Variable importance plots
for random forest models predicting the first and second FPCs are
shown in Figure 8. Higher values of MSE are associated with more
important predictors. Thus, in the first FPC (Figure 8a), which is
strongly correlated with production, tvd (depth), EFF_LAT (length of
lateral well), porosity, and Fluid. Ft (the amount of fluid used to
stimulate the reservoir per foot) are the most important predictor
variables.

Another way to analyze the models is with partial dependence
plots (Hastie et al., 2001). These plots are a useful way of evaluating
the effect of any given variable on the overall prediction. Because

Variable (abbreviation if different)

Source/description

Geology:

Porosity

Water saturation (Sw)

Total organic carbon (TOC)
Geothermal gradient (gradient)
Isopach

Total vertical depth (TVD)
ZONE

Interpolated from logs, median along lateral length of well
Interpolated from logs, median along lateral length of well
Interpolated from well data, median along lateral length of well
Interpolated from well data, median along lateral length of well
Interpolated from logs, median along lateral length of well
Well report data, median along lateral length of well

Principal zone that the well was drilled into (Lower Eagle Ford,
Upper Eagle Ford, or mixed.

Eagle Ford curvature (EGFDp50)

Anacacho curvature (ANACACHOp50)

Lateral length (EFF_LAT)
Fluid per foot (Fluid.Ft)

Stage spacing (Stage.Spacing)
Starting choke size (choke)
Trend of choke size (chokediff)

Seismic attributes:

Absolute value of mean curvature (of all directions) from AASPI.
Median along lateral length of well, Eagle Ford horizon

Absolute value of mean curvature (of all directions) from AASPI.
Median along lateral length of well, Anacacho horizon

Completion parameters:
Completions database
Completions database
Completions database
Completions database

Best fit of choke size on time series. Raw choke size data
from completions database
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the variables are rarely independent, partial dependence plots ac-
count for the effect that other variables could have on the prediction
by averaging the predicted value over all possible values of the pre-
dictors. By using partial dependence plots, we can evaluate the im-
pact of key factors on the overall production. For instance, we can
see if more curvature anomalies on average predict a high score on
the second principal component.

Reconstructing production curves

After predicting the scores on the first and second FPCs, we were
able to reconstruct decline curves. We held out approximately 25%
of the data, or 26 wells, to validate our method. We compared the
estimated total production with the actual total production. We also
used as an error analysis the standard deviation of the ensemble of
trees. The results of this comparison are shown in Figure 9. As
shown, the true total production is within the error of the estimated
total production for 23 out of the 26 wells. The 2 for the relation-
ship of predicted versus actual total BOE/foot is 0.65.
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Figure 8. (a) Variable importance for predictions on the first FPC.
(b) Variable importance for predictions on the second FPC. Both are
shown as the increase in MSE when the variable is permuted or
randomly shuffled.

The two wells that were not within one standard deviation of the
prediction are shown with a dashed line in Figure 9. At each of these
wells, we underpredicted the total production. In spite of the two
wells that are underpredicted, this model is able to account for most
(65%) of the variation in total well production, as well as character-
ize much of the temporal distribution of the production. With the
two outliers removed, it accounts for 76% of the variation in total
well production. These outliers have completion parameters that lie
well within the distribution. The most pronounced outlier (the top
dashed line in Figure 9, also shown in Figure 10d) has among the
lowest values for TOC and relatively high values for water satura-
tion. Both of these parameters are typically associated with worse
production, yet the well performs much better than expected. The
reasons for this unexpected behavior are currently unknown and
require further research to determine.

DISCUSSION

The random forest models produced estimates of the scores on
the first and second FPCs, which are directly related to decline
curves as shown above. In addition to providing predictions of pro-
duction, the random forest models can also be used to better under-
stand the key drivers of well production. To assess the impact that
each predictor has on the output, we used partial dependence plots.
The first principal component was strongly correlated with total
production, and the second principal component was not correlated
with production; rather, it described the timing of the production —
higher scores indicated that more production happened early on, but
production dropped off more quickly as the life of the well con-
tinued.

We found that the depth of the well had the greatest impact on
production, with deeper wells experiencing worse production (Fig-
ure 11a). All wells were drilled to the Eagle Ford formation, but the
depth of the Eagle Ford Formation varies significantly across the
study area. The depth of the well is likely correlated with a great
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Figure 9. Comparison of the predicted total BOE/foot and the ac-
tual total BOE/foot. Outliers are noted with a dashed line. The error
bar is a representation of one standard deviation, calculated from the
random forest.
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number of other parameters (i.e., geologic, geochemical, maturity,
pressure, etc.) and further analyses would be required to determine
these potentially lurking variables that all greatly affect well perfor-
mance. As expected, we also found that wells with higher porosity,
lower water saturation, and higher TOC performed better than aver-
age (Figure 11b-11d).

In addition to geologic parameters, we were also interested in ex-
ploring relationships between geophysical data and well production.
Some have hypothesized that curvature can be used as a proxy for

fractures, which could enhance production in unconventional re-
source plays (Gale et al., 2007). Testing this hypothesis was one
of the objectives of this study. The relationship between curvature
and well production, as described by partial dependence plots, is
shown below in Figure 12a and 12b. Figure 12a shows that there
is very little correlation between curvature in the Lower Eagle Ford
and total well production, as indicated by scores on the first FPC.
Figure 12b shows that there is a positive relationship between higher
curvature on the stratigraphically higher Anacacho horizon and
scores on the first FPC.

These analyses of the current data indicate that
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curvature is only weakly useful for identifying
areas with higher production potential for the
area in our study. The impact of curvature values
at different horizons on production is inconsis-
tent. Curvature anomalies in the Anacacho hori-
zon, which is stratigraphically higher, could be a
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proxy for fractures that are subseismic in the
Lower Eagle Ford. Further research is needed
to validate this hypothesis, but it is one potential
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explanation for our observations.

In addition to curvature, we also experimented
with including symmetry attributes, which are
indicative of faults, as predictors. These attributes
did not have a noticeable impact on our predic-
tions. As we noted in the “Introduction” section,
the methods developed in this study provide a
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Figure 10. Comparison of decline curves predicted from the random forest model (solid
black line) and actual production (dots). The dashed curve is the smooth fit to the data
from FPCA. The grayed-out region is one standard deviation around the prediction,
calculated from the random forests. (a-c) Prediction and observed data for three typical
time series (24 out of the 26 wells had the FPCA decline curve fall within the gray one
standard deviation zone). (d) Two out of the 26 wells did not fall within the gray zone.

The one shown here is the largest outlier.

400 framework for combining geologic data, seismic
attributes, and engineering data to predict well
production, but they do not constitute an exhaus-
tive analysis of all seismic attributes that could be
useful in predicting production. Additional seis-
mic attributes could prove more helpful in predict-
ing production in our study area. Furthermore, the
usefulness of seismic attributes, and any predic-
tors for that matter, is highly dependent upon
the geologic setting. From our work, it appears
that in our study area, geologic and engineering

&0
~

=3
~

©
IS
o
>

FPC1 Score
o
=)

FPC1 Score
o
o

factors have a more pronounced relationship to
production than curvature attributes. Many studies
have found seismic data, including seismic attrib-
utes, to be closely related to properties controlling
reservoir production (Skjervheim et al., 2005; Av-
seth et al., 2010; Iturraran-Viveros, 2012; Na’imi
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etal., 2014). The extent to which they are effective
in predicting productive areas is dependent upon
the geology, as well as the attributes used. Future
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work could test the ability of additional seismic
attributes to aid in predicting production in our
study area or other study areas.

In addition to geologic and geophysical
parameters, our random forest models also ac-
counted for engineering parameters. The rela-
tionship of engineering parameters to well
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Figure 11. Comparison of geologic parameters with the first FPC, which represents
total production. Dotted lines represent the fifth and 95th percentiles of each variable.
Areas outside of the dotted lines are not as well-constrained due to fewer training data.

6.5 production is complex, and it often varies based
on the surrounding geologic and geophysical
properties of the rock. Because partial depend-
ence plots average all geologic variables, they
tend to blur out the interrelationships between



Downloaded 03/25/20 to 73.151.200.131. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Machine learning in unconventional 047

=2
~

o
~

0.4 0.4

FPC1 Score

FPC1 Score

0.0 0.0

le-04  2e-04 " le04  2e-04
EGFDp50 ANACACHOp50

Figure 12. Partial dependence plots showing the influence of (a) Ea-
gle Ford curvature and (b) Anacacho curvature on well production,
as indicated by the FPCI score.

engineering and geologic parameters. Furthermore, the ability of the
random forest models to learn relationships between engineering
parameters and production is entirely dependent on the training
data. Because completion methods are continuously being im-
proved, using relationships inferred from historical completion data
to inform future completions decisions has some limitations. We
consider our inclusion of engineering parameters as a way to nor-
malize for them, while focusing our discussion on relationships be-
tween the production and the geologic and geophysical parameters.

CONCLUSION

This research seeks to use geophysical attributes together with pro-
duction data to improve predictions about reservoir production. This
is a complex problem because the effect of engineering parameters on
well production is not well-understood. However, we have demon-
strated that machine-learning techniques can use geologic and seis-
mic data, as well as completions data, to predict production time
series curves with an r? of 65%—76%. Although machine-learning
methods can enhance predictions, it is still necessary to use physical
models to understand the key mechanisms behind production.
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