
Methane Leaks from Natural Gas Systems Follow Extreme
Distributions
Adam R. Brandt,*,† Garvin A. Heath,‡ and Daniel Cooley§

†Department of Energy Resources Engineering, Stanford University, Stanford California 94305, United States
‡National Renewable Energy Laboratory, Golden, Colorado 80401, United States
§Colorado State University, Fort Collins, Colorado 80523, United States

*S Supporting Information

ABSTRACT: Future energy systems may rely on natural gas as a low-cost fuel
to support variable renewable power. However, leaking natural gas causes climate
damage because methane (CH4) has a high global warming potential. In this
study, we use extreme-value theory to explore the distribution of natural gas leak
sizes. By analyzing ∼15 000 measurements from 18 prior studies, we show that
all available natural gas leakage data sets are statistically heavy-tailed, and that gas
leaks are more extremely distributed than other natural and social phenomena. A
unifying result is that the largest 5% of leaks typically contribute over 50% of the
total leakage volume. While prior studies used log-normal model distributions,
we show that log-normal functions poorly represent tail behavior. Our results
suggest that published uncertainty ranges of CH4 emissions are too narrow, and
that larger sample sizes are required in future studies to achieve targeted
confidence intervals. Additionally, we find that cross-study aggregation of data
sets to increase sample size is not recommended due to apparent deviation
between sampled populations. Understanding the nature of leak distributions can improve emission estimates, better illustrate
their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more
effective design of leak detection technologies.

■ INTRODUCTION

Some have argued that natural gas can play a key role in the
future U.S. and global energy system as part of an “all of the
above” energy strategy.1 This is because natural gas is abundant,
environmentally preferable to coal in many respects, and useful
in complimenting flexible power systems under scenarios of
rapid and high renewables penetration. However, even
relatively small leaks from the natural gas system can create
large climate concerns because natural gas is comprised mostly
of methane (CH4), a gas with high global warming potential
(GWP, ∼34 times that of CO2 over 100 years, ∼86 times on a
20-year basis).2

The U.S. Environmental Protection Agency (EPA) con-
structs an estimate of the volumes of methane emitted by the
natural gas industry as part of its greenhouse gas inventory
(GHGI).3 A suite of evidence from many studies suggests that
natural gas CH4 leakage rates in the U.S. are higher than these
official estimates,4,5 which can create challenges for meeting
climate stabilization goals.6,7 Little is known about global
natural gas system leakage rates, although a recent strong rise in
global CH4 concentrations raises concern about unknown or
undercounted global CH4 sources.7 Some large studies have
found high emissions from oil and gas systems in particular,
including those using satellites,8 and those analyzing historical
air samples.9

All engineered systems have imperfections, and some loss of
product is unavoidable. For example, electricity grids typically
lose 5% or more of transmitted power.10 The natural gas
system is similar: upsets, malfunctions and errors can result in
gas escaping to the air. In addition, some natural gas devices
like certain pneumatic valvesemit gas as a matter of their
engineering design. The sum of the former (so-called fugitive
emissions) and the latter (vented) we will refer to collectively
as leaks.
One posited reason for this consistent underestimation of

emissions is the “heavy tailed” distribution of emissions rates.4

A number of early experimental studies of methane emissions
from natural gas facilities found that emissions rates from
natural gas leaks are highly heterogeneous: a small fraction of
leaking sources (so-called “super-emitters”) often account for
large fraction of the total volume of leakage.11−19 In addition, a
suite of recent studies funded by the Environmental Defense
Fund (EDF) have also found similar behavior.5,11,20−30 Other
studies by academic researchers31−34 and consultants35,36 found
similar results. While this heavy-tailed behavior has been
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observed in the literature many times, it has not been analyzed
in a comprehensive fashion.
These superemitting sources represent profitable “low

hanging fruit” for methane reduction efforts. Reducing
emissions from these sources is claimed to be profitable by a
number of sources.37,38 Recent work in the Environmental
Defense Fund “Barnett Coordinated Campaign” created a
defined class of emitters called “functional super-emitters”,
based not only on the magnitude of the emissions source, but
also on the throughput of the emitting facility.39

These superemitting sources may affect the uncertainty
quantification for emissions inventories. EPA inventory
methods take activity factors (AF), such as number of wells
in a region, and multiply these by emissions factors (EFs),

typically construed as mean emissions per activity unit (e.g., kg/
well-yr). To account for large emitters, uncertainty was
modeled in inventory methods using log-normal emissions
distributions. However, if sampling efforts used to construct
EFs missed large emitting “outlier” sources due to their
infrequency, then their arithmetic mean could underestimate
the true population mean. Poor understanding of source size
distributions also affects scientific efforts to better understand
emissions rates: since the distributions of populations of
emitters are poorly understood, it is unclear what sample sizes
are required for accurate representation of the underlying
populations. Note that the issues of activity factor uncertainty
can be significant, but are not addressed here.

Table 1. General Study Characteristics for Included Studies (And Source of Underlying Measurements)

study location facilities studied total sampled or screened components emission volumes quantified

Allen et al.
2013

U.S. (various) production facilities and drilling/completions
activities

150 sites, 2030 listed components, unclear
total component counta

769

Allen et al.
2014a

U.S. (various) production facilities, pneumatic devices 377 measured devices 377

Allen et al.
2014b

U.S. (various) production facilities, liquids unloading 107 wells 105

ERG et al. 2011 Texas (Barnett
shale)

production (w/inclusion of few compressor
stations and processing facilities)b

388 sites containing: 1138 wells, 1209 tanks,
188 compressors. 736,659 estimated valves
and connectors.

2147

GHGRP 2015 U.S. (various) all reporting facilities with reciprocating
compressors, less categories with small
numbers of reporting facilities

16 480 possible reported values 5048 reported values

Harrison et al.
2011

Texas, New
Mexico

compressors, focus on transmission with some
processing and gathering/boosting

84 compressors, over 5800 sources 176e

Hendrick et al.
2016

Massachusetts distribution mains 100 100

Kang et al.
2014

Pennsylvania abandoned wells 19 wells 19

Kuo 2012 California all stages (production, processing, storage,
transmission, and distribution)

972 devices,c 92 157 components screened 337

Lamb et al.
2015

U.S. (various) metering and regulation, distribution 22 participating distribution companies 257 pipe leakage measurements, 693
metering and reg. measurements

Lan et al. 2015 Texas (Barnett
shale)

wellpads, compressor stations, gas processing
plants

152 facilities 24 wellpads, 7 compressor station
measurements at 6 compressor stations,
2 gas processing plants

Mitchell et al.
2015

Texas (Barnett
shale)

gathering facilities and processing plants 114 gathering facilities, 16 processing plants 131 reported observationsf

NGML et al.
2006

U.S. (various) gas processing plants 5 gas plants, 74 438 components screened 1629 to 1641g

Omara et al. Pennsylvania production wellpads 35 wellpads 4 flowback events, 31 other general
Wellpad plumes

Rella et al. 2015 Texas (Barnett
shale)

well pads 182 wellpads 115 nonzero measurements

Subramanian et
al. 2015

U.S. (various) compressor stations 47 compressor stations 327 extracted for this study, some are
compositeh

Yakovitch et al.
2015

Texas (Barnett
shale)

various facility-scale plumes 170 sites 169 reported measurements

Zimmerle et al.
2015

U.S. (various) compressors and other components in
transmission and storage sector

Measurements at 677 facilities 2292 new onsite measurements reported,
2685 extracted for this studyj

aListed components include pneumatic controllers and chemical injection pumps. Does not include valves, flanges, etc. which are generally included
in other study source counts. bTable 3.1-1 in study lists 375 well sites, 8 compressor stations, 1 proc. facility, 1 water treatment, 1 drilling, 1 fracking,
1 completion flowback. c“Equipment/systems screened included 172 wellheads, 131 separators, 17 dehydrators, 145 piping segments, 66
compressors (51 reciprocating, 9 centrifugal, 6 rotary), 374 pneumatic devices, 19 metering and regulating stations, 34 hatches, 2 pumps, and 12
customer meters” (Kuo 2012 p. 5). dNumber of compressors across 11 sites from Table 2-1. Total components screened not presented, but averages
across 5 transmission stations are presented in Table 3-1. e231 total possible sources are reported in Harrison et al. appendix tables, but some sources
are reported as “-“ (likely not measured, as distinct from reported values of 0 scfd). fThe paper cites 130 G&P facilities, 114 gathering and 16
processing. Supplemental data sets include 131 observations. gDifferent numbers of leaks were reported in text and in tabular results (e.g., Appendix I
from which data were extracted). hEach site can (and does) report multiple measurements for different types of equipment. In addition, each type of
equipment at a given facility could report emissions summed across multiple instances of that equipment. For example, site “g” may report emissions
from pneumatic devices as the sum of emissions from 4 leaking pneumatic devices. jThis total for our study includes all sources in the document
“CDFmaster.xlsx”, excepting combustion related sources on the following tabs: CombustionLean2Stroke, CombustionLean4Stroke, CombustionRich4-
Stroke, CombustionTurbine. This totals 2685 measurements.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b04303
Environ. Sci. Technol. 2016, 50, 12512−12520

12513

http://dx.doi.org/10.1021/acs.est.6b04303


In this paper, we explore the statistical behavior of existing
emissions data sets. We then explore the implications of these
results for inventory methodologies and for designing new
methane studies. We first collect data from a total of 18
different sources. We then create within-study and cross-study
subsets of similar emissions sources. We then perform a variety
of statistical and simulation-based studies to examine the
potential for meta-analysis and cross-study aggregation, as well
as study the impacts of assuming log-normal functional forms
for emissions distributions. Lastly, we discuss the implications
of our results for solving the leakage problem.

■ MATERIALS AND METHODS
We collect data from a screened set of 17 measurement-based
studies and one regulatory data set (Supporting Information,
SI, section S3), which include over 15 000 reported emissions
rates. These data sets are summarized in Table 1.
The screening criteria for measurement-based studies require

that underlying direct measurements be reported by the study
authors, rather than summary statistics (e.g., mean) or plots
(e.g, histograms of emissions distributions). The included
studies are the only known studies in the public domain where
the full set of underlying emissions measurements are reported
by study authors. In addition, we include one set of emissions
rates reported by natural gas operators to the EPA Greenhouse
Gas Reporting Program (GHGRP), as these data in particular
are required to be measured as part of the emissions reporting
process (see SI for more discussion).
Some studies report emissions per site (e.g., wellpad) or

facility (e.g., gas processing plant). In some cases, site-wide
estimates are made via remote measurement. Our screening
process separates these results from device-level measurements.
These studies cover a range of years, industry segments, and

geographical locations. Sample sizes range from tens to
thousands (see Table S1). In addition, the methods used to
measure and classify emissions differ, at least slightly, between
studies (see Table S2 for the emissions source classification
schemes by source).
While there is measurement uncertainty any time an

emissions rate is quantified, we neglect measurement
uncertainty in this study. For example, direct measurement
techniques such as the Bachrach Hi-Flow Sampler (BHFS) are
often estimated to be accurate to ±10%.16 We consider all
emissions at their reported levels and study the effect of
distributions of reported emissions.
An important note is that recent work40,41 has suggested that

there may be downward bias in the widely used BHFS,
especially in cases where methane concentrations are low. The
above work calls into question the results of the Allen et al.
studies,11,23,24 but the issues noted could affect other studies as
well. It is not clear at this time either how widespread such
problems are, nor the resulting degree of underestimation.
Note that if the BHFS does indeed systematically under-
estimate the size of large leaks, then results here about the
importance of superemitters would only be strengthened, not
weakened.
A summary description of the methods and results of each

study, as well as any caveats about the use of the data, are
presented in SI section S2.
In order to further analyze data at a more granular level, we

create two sets of categorized “source level” data sets. The first
data set creates groups of like components within a given study.
The second data set aggregates similar components across

studies (e.g., all reported “flange” leaks). These will henceforth
be called “single-study” and “cross-study” data sets, respectively.
Single-study data sets have smaller sample sizes than cross-
study data sets, but do not suffer from concerns about fitting
single distributions to aggregate categories (see below). The
data sets used rely on previously published studies and include
or exclude types of sources as performed in the original study
(e.g., for example, exhaust emissions of CH4 due to incomplete
combustion do not appear in any of the source data sets,
though can be an important source).
Source categories were used wherever possible from those

defined in original studies. Each study is given a leak
classification scheme that includes up to three possible levels
of classification (“sources”, “sub-sources”, and “sub-sub-
sources”). Selecting categories for single-study data sets was
done as follows:

• By default, the source-level categories are preferred (see
SI Table S5).

• The resulting categorizations are reviewed by hand, and
some studies are further disaggregated into “sub-source”
categories where engineering judgment suggests appro-
priate (see SI for individual exceptions)

• An illustrative sample size cutoff of n ≥ 100 is applied to
ensure that there are sufficient measurements in each
studied category.

A total of 52 single-study data sets exist after steps 1 and 2
(see SI). Of these categories, 34 had more than 100
observations. These 34 categories are shown in SI Table S4.
For creation of cross-study data sets, engineering judgment

and discussion with original study authors was used to create a
set of 26 cross-study component- or device level data sets, and
5 whole-facility data sets. Aggregation rules use “or” logic to
allow inclusion of broader membership (no double counting).
SI Tables S6 and S7 list these aggregation rules based on study
category names outlined in SI Table S5. The statistical validity
of grouping similarly named measurements from different
studies was performed using two-sample Kolmogorov−
Smirnov (KS) tests (null hypothesis: like-named data sets
were sampled from the same underlying population).
For data sets passing screening tests, a number of additional

statistical analyses were performed, including: finding the best-
fitting log-normal distribution using method of moments
(MOM), assessing log-normal fits using KS tests and properties
of residuals in tail observations, and computing tail indices for
weight of tails (large data sets only). We focus here on log-
normal distributions because they are widely used, although we
note that some studies have fitted other distributions as well.26

See SI section S4 for more details.
Lastly, we performed simulation studies to examine the

impacts of assuming that emissions rates are log-normally
distributed. We explore including breadth and skew of mean
estimate confidence intervals (CIs), reduction in CI breadth
with increasing sample size, and expected contributions of
superemitters to the leakage problem (see SI section S5). We
conclude with some discussions about best practices as
alternatives to using log-normal distributions.

■ RESULTS AND DISCUSSION
Our synthesis results show that (1) heavy-tailed distributions
are a pervasive characteristic of natural gas leak size
distributions; (2) natural gas leaks are more heavy-tailed than
other natural and social phenomena, (3) the largest 5% of leaks
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are (by median expectation) responsible for over 50% of the
leaked methane from a given source category; (4) the recent
use of log-normal distributions to model the distribution of
leaks within a source category is not supported and
systematically underestimates the importance of large emitters;
(5) heavier-than-log-normal distributions lead to larger
uncertainty than currently included in official estimates; (6)
robustly characterizing heavy-tailed distributions will require
sample sizes much larger than currently used in most studies;
(7) aggregating results across studies to improve accuracy and
robustness is statistically challenging. We discuss these results
sequentially, and then we last discuss technology and policy
implications of the synthesized evidence.
First, heavy-tailed distributions of emissions sources are

ubiquitous across all available data sets. By ordering emission
data sets from largest to smallest we create a set of cumulative
normalized distributions (Figure 1). Each plot shows the
increase in contribution to total emissions (y-axis) when
cumulating ranked leaks (x-axis). Note that emissions

distributions plotted by study (Figure 1b) show more
contribution from large sources than a wide range of illustrative
normal and log-normal distributions (Figure 1a). Similar plots
of the 20 largest single-study data sets (Figure 1c) also show
skewed distributions.
Second, Figure 1d shows that the tails of these distributions

are extremely heavy compared to other heavy-tailed phenom-
ena. Methane emissions are more extremely distributed than
other natural and social phenomena known to exhibit heavy
tails: precipitation events, investment losses, United States crop
insurance claims, and United States personal incomes42−45 (see
especially 1d inset for top 2.5% of observations). Natural gas
emissions distributions are less heavy-tailed than United States
flood insurance claims. See SI section S2 for description of data
gathering methods.
Third, from these results we propose a rule of thumb which

we call the “5−50 rule”: for a given source category, the largest
5% of leaks should be expected to account for at least 50% of
total emissions on a median basis. As in prior studies,27 we use

Figure 1. Normalized cumulative distributions showing the cumulative fraction of measurement samples (x-axis) and the cumulative fraction of
emissions (y-axis), ordered from largest to smallest leaks. (a) shows envelopes of cumulative plots of n = 100 samples drawn from listed uniform,
Gaussian and log-normal distributions. (b) shows cumulative contributions normalized for each study (18 total) in the analysis. (c) shows results for
20 largest source-specific data sets (see SI for abbreviations). And (d) compares those source-specific data sets (light gray) to heavy-tailed
distributions from other natural and social phenomena. Inset to (d) focuses on the top 2.5% of samples, showing that emissions distributions for
natural gas data sets are more extreme than other known heavy-tailed phenomena. See SI for additional discussion of methods and full lists of
included data sets.
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the top 5% as our working definition for “super-emitters”.
Figure 2 plots the contribution of superemitters to total leakage

for study-specific and device-specific data sets from Figure 1.
Note that the median contribution of the largest 5% of leaks is
above 50%. When reported, studies have tended to find
between 0.5% and 2% of all operating components to be
leaking a measurable amount,13,16,32 suggesting that these
superemitters will typically represent fewer than 1-in-1000
operating components.
Fourth, we show that the use of log-normal fits to data

systematically underestimates the importance of the largest
emitters. EPA has used log-normal distributions in modeling
uncertainty and log-normal curves have been recently suggested
as useful in modeling heavy-tailed emissions sources.26,46 For
each device-specific data set we use method of moments
(MOM) to generate the best-fitting log-normal distribution.
We then use the Kolmogorov−Smirnov (KS) test to examine
whether the data were statistically likely to have been derived
from the best-fitting log-normal distribution. 31 out of 34 data
sets reject this hypothesis at p < 0.0001 level, while 33 of 34
reject this hypothesis at p < 0.05. These single-study data set
measurements therefore do not appear to be drawn from log-
normal distributions. Further, the residuals between log-normal
fit and data in the tail are overwhelmingly positive (see Table
S21). The implication of positive residuals is that fitted log-
normal distributions will underpredict the importance of the
largest sources. Graphical examples of positive residuals are
shown in SI Figures S1 and S2.
The extent of this mis-alignment is illustrated in Figure 3. For

the 20 largest single-study data sets, we draw from each best-

Figure 2. Fractional contribution of top 5% of emitters in each of 18
studies (red) and 34 device-specific categories of data from single
studies (orange). Median results across both groupings are above 50%
contribution from top 5% of emitters. Similar results were found for
multistudy data sets (not plotted here, see SI).

Figure 3. Results of using log-normal fits to estimate importance of superemitters (top 5% of sources). (a) Average size of leaks in top 5% expressed
as multiple of population mean. Box plot shows interquartile range (box) and 1.5x IQR (whiskers) as well as outliers (dots) for 500 simulations.
Empirically observed multiple of mean is shown as blue diamond. (b) Contribution of top 5% of sources as fraction of overall emissions. Empirical
fractional contribution (blue diamonds) compared to 500 simulations based on best fitting log-normal distributions (semitransparent red circles).
Percentiles of empirical observations are reported in (b). In both cases, drawing from a log-normal fit rarely recreates the empirical contribution of
largest sources.
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fitting log-normal distribution a number of samples equal to the
number of empirical samples. We repeat this process over 500
trials and each time compute two quantities: the average size of
the top 5% of leaks expressed as multiple of the mean leak size
(3a) and the fraction of all gas emitted by the top 5% of leaks
(3b). Lognormal-derived results systematically underestimate
both the size and relative contribution of the largest sources to
empirical observations. Figure 3b lists numerical percentiles of
empirical results, which are consistently high. In summary:
while using a log-normal fit may recreate mean emitter
behavior, it systematically underestimates the contribution of
superemitters to the problem.
Fifth, heavy-tailed distributions result in wider and more

asymmetric confidence intervals (CIs) around estimates of
mean emissions than is currently appreciated. Estimated tail
indices for some of these data are so extreme that standard CI
approaches may be inappropriate and may lead to overly
narrow and downwardly biased estimates of uncertainty.
Current EPA methods47 use this the AF-EF approach along
with uncertainty analysis based on sampling from log-normal
modeling approaches (SI section S2.3). This results in an EPA
GHG inventory sector-wide uncertainty of −19% to +30%. Our
analysis in SI (section S5) shows that a more robust uncertainty
approach for heavy-tailed distributions (i.e., nonparametric
bootstrap resampling) increases the width of CIs, generally by
increasing the upper bound. Via simulation from a heavier-
tailed-than-log-normal distribution (SI Section 6), we assess the
coverage rates of m-out-of-n nonparametric bootstrap, n-out-of-
n nonparametric bootstrap, and log-normal-based parametric
bootstrap and find them to be 94.5%, 94.7%, and 90.7%
respectively (S6.1). The coverage results further suggests that
fitting a log-normal distribution gives an unrealistically narrow
uncertainty range around the mean estimate.
Sixth, heavy-tailed distributions create challenges for required

sample sizes. We investigate these impacts via simulation (S6).
We illustrate this with a device-specific data set (data set 4 in
Figure 1c). The first case (Figure 4a) samples repeatedly from
the empirical distribution with increasing sample sizes to
characterize how the CI around the mean shrinks with
increasing sample size. We see that the CI stays wide up to
and beyond sample sizes achieved in ground studies (n =
1000). Figure 4b shows that sampling from a fitted log-normal
predicts mean emissions well (as expected) but has a CI that is
overly narrow at any given sample size. The ratio of empirical
to log-normal CI is plotted in Figure 4c, showing that the
problem of an overly narrow CI from a log-normal fit only
slowly improves with sample size. Figure 4d shows that
increasing the sample sizes from a log-normal-derived
population does not remedy the underestimation of the
contribution of superemitters.
Seventh, there are statistical challenges to pooling results

across studies. It might seem reasonable to address the
challenge of small sample sizes by aggregating measurements
of similar sources made across multiple studies. For example,
measurements of emissions from “threaded connections” (i.e.,
nonwelded connections between devices and pipes) can be
grouped across the 7 studies that report these kinds of leaks.
However, after applying source category classifications to create
cross-study data sets (S4.1), few of these groupings pass
statistical muster: observations from similarly named sources
but different studies rarely pass the two-sample KS test,
indicating that studies’ samples of similarly named devices
appear to be drawn from different underlying populations

(S4.2). For a cross-study category of “threaded connections”
with observations from seven studies, 20 out of 21 unique
pairwise study comparisons fail the two-sample KS test at the p
= 0.01 level (S4). That is, in almost all cases, when we compare
any two data sets of leaks from devices called “threaded
connections”, they do not appear statistically to be derived from
the same population. Similar results are seen widely for cross-
study aggregation (see SI).
Possible reasons for KS test failure include (a) devices

physically differ in design, size, etc. despite being similarly
named; (b) operator practice or management strategies differ;
(c) scientific instruments or measurement methods differ; (d)
studies mistakenly aggregate unlike devices into a common
category; or (e) the aggregation categories we tested are invalid.
KS test failure may imply that source category definitions are
not precise enough to identify populations with similar
emissions distributions, or perhaps that determinants of
emissions rates are poorly understood and incorrectly stratified
in sampling design (e.g., component age and operating pressure

Figure 4. Effects of changing sample size on uncertainty in mean
estimate, after drawing from (a) empirical distribution (data set 4 from
Figure 1b) or (b) its best-fitting log-normal distribution. (c): The ratio
of empirical 95% CI to log-normal-derived 95% CI is nearly always
above 1, and only decreases slowly with sample size, suggesting that
log-normal CIs are consistently too narrow. (d): Under-prediction of
the importance of the top 5% of emitters is not remedied by increasing
sample size.
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may be more useful classification variables than component
type, or may be important subcategory classifications). An
additional implication is that KS-test failure raises concerns
about extrapolating experimental results from sampled devices
to their full populations.
Importantly, GHG inventories3,44 are generally constructed

by summing estimated emissions from many source categories
within a given sector. This summation could reduce the
uncertainty in sector-wide emissions through compensating
errors: overestimates in one source category can counteract
underestimates in others. However, because of the wide range
in absolute magnitude of emissions across source categories,
this compensation is of unknown effectiveness (e.g., an
underestimate in a large source category may be difficult to
fully offset with overestimates in smaller source categories).
Further, if inventories are to be useful for prioritization of
emissions reduction efforts, then large uncertainties in source-
level emissions estimates can result in suboptimal allocation of
mitigation resources.
The above results also have implications for regulatory

design. Technological fixes alone will not solve problems arising
from damage or out-of-specification conditions that might
cause superemitter behavior. Each of millions of global natural
gas infrastructure sites (e.g., gas wells or compressor stations)
can contain hundreds (or possibly thousands) of potential
points of leakage. In this context there is no substitute for
diligence: to reduce frequency of superemitters, formal leak
detection and repair (LDAR) programs have been demon-
strated to be effective.48 Given the stochastic nature of device
failures and large consequences of small numbers of super-
emitters, this suggests that a regulatory approach mandating
repeat checkups (as in recently proposed EPA regulation)49

could effectively reduce superemitter emissions. Regulators can
learn from other domains where superemitters are a major
challenge (e.g., vehicle emissions).
Performance targets for novel detection technologies50 can

be informed by the emission distributions synthesized here.
Figure 5 shows cumulative absolute emissions magnitudes for
various sources. Across device-level leaks from all included
studies, 90% of emissions result from devices with emissions
greater than ≈60 kg CH4/d. In contrast, a recent U.S. Federal

funding effort50 aimed to detect 90% of emissions with a
sensitivity target of 2.7 kg CH4/d. While we cannot claim that
our aggregate data set is representative of the actual real-world
mix of leaks, basing R&D targets on the largest data set possible
could possibly allow more efficient solutions to the problem
(i.e., avoid “over-engineering” of detector technologies).
Superemitters are attractive as a mitigation target for

achieving substantial emissions reductions at low marginal
cost. However, as seen in Figure 5, certain source categories
have much larger emissions than others. This suggests that a
two-tiered policy approach could be efficient. Such an approach
could include LDAR programs to find and repair superemitting
devices, coupled with empirically based emission limits or more
rigorous and pro-active preventative maintenance schedules for
devices that are known to be large emitters. The growing body
of work we synthesize here can inform improvements to the
technical design of both approaches.
Lastly, these results have implications for meeting country’s

intended nationally determined contributions (INDCs) of
reducing GHG emissions made in the recent 2015 Paris climate
agreements.51 If a particular country plans to rely on natural gas
for their INDCs, compliance and achievement of these targets
cannot simply rely on estimates of GHG emissions at the point
of combustion, but must also conduct comprehensive sampling
“upstream” of the power stations and other points of use to
ensure no degradation of performance due to methane leaks.
Gaps remain in our understanding of superemitters, and

much work remains. Researchers and funders can use the
results presented here to improve sampling design to enhance
the robustness of results from methane measurement studies,
optimize sample sizes, and address critical gaps in knowledge.
The above analysis illustrates the deficiency of assuming a

log-normal distribution, but any parametric distribution, when
fitted to the entire data set, is likely to poorly represent the
upper tail due to the small number of tail observations that will
be outweighed by the body of the observations. Consequently,
CIs generated using parametric methods will likely under-
represent the uncertainty associated with the mean estimates.
Alternatively, using a nonparametric approach such as
resampling does not assume any underlying distribution, and
instead directly employs the values observed in tail. However,
resampling comes with its own challenges: it requires adequate
sample sizes, and the extremely heavy tails exhibited by
methane leakage data sets imply that standard CI methods may
not be suitable (S4).
Standardizing source category classification schemes would

increase robustness of results, including extrapolations to
national populations, while allowing for future meta-analysis.
Lastly, inventory uncertainty quantification could be improved
by leveraging available data to develop more accurate
confidence intervals and statistical models; available evidence
suggests that uncertainty is greater than currently estimated.
Other nonstatistical challenges remain that are not well

addressed by the above analysis. One challenge in many
experimental designs (including some reviewed here) is the fact
that on-site measurements require participation of operating
companies. This subjects all such studies to difficult-to-quantify
sampling bias (i.e., volunteering companies may not represent
all companies). In addition, there is currently little under-
standing of superemitter persistence and intermittency. Nor is
there much understanding of the root causes of superemitter
failures.

Figure 5. Cumulative fraction of leakage as a function of leak size for
multistudy device-specific data sets. Cumulatively, 90% of all emissions
from device-level measurements come from leaks larger than 60 kg
CH4/d.
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Addressing the methane leakage challenge is a necessary
condition for natural gas to contribute to a clean energy future.
And solutions to this methane challenge will be more effectively
mandated, more efficiently designed, and more economically
deployed if we improve our understanding of superemitting
sources.
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