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ABSTRACT

We have used numerical modeling to capture the physics re-
lated to coupled fluid-solid interaction (FSI) and the frequency
dependence of pore scale fluid flow in response to pore pressure
heterogeneities at the pore scale. First, we perform numerical
simulations on a simple 2D geometry consisting of a pair of con-
nected cracks to benchmark the numerical method. We then com-
pute and contrast the stresses and pore pressures obtained from
our numerical method with the commonly used method that
considers only structural mechanics, ignoring FSI. Our results
demonstrate that the stresses and pore pressures of these two
cases are similar for low frequencies (1 Hz). However, at higher
frequencies (1 kHz), we observe pore-pressure heterogeneities
from the FSI numerical method that cannot be representatively
modeled using the structural mechanics approach. At even higher

frequencies (100 MHz), scattering effects in the fluid give rise to
higher pressure heterogeneities in the pore space. The dynamic
effective P-wave modulusM, attenuationQ−1, and P-wave veloc-
ity VP were calculated using the results obtained from the numeri-
cal simulations. These results indicate a shift in the dispersion
curves toward lower frequencies when the fluid viscosity is in-
creased or when the aspect ratio of the microcrack is decreased.
We then applied the numerical method on a 3D digital rock sam-
ple of Berea sandstone for a sweep of frequencies ranging from
10 Hz to 100 MHz. The calculated pore pressure at the low fre-
quency (1 kHz) is homogeneous and the fluid is in a relaxed state,
whereas at the high frequency (100 kHz), the pore pressure is
heterogeneous, and the fluid is in an unrelaxed state. This type
of numerical method helps in modeling and understanding the
dynamic effects of fluid at different frequencies that result in
velocity dispersion and attenuation.

INTRODUCTION

Digital rock physics (DRP) is becoming an indispensable tool for
rock-physics analysis and reservoir characterization workflow in
exploration geophysics. DRP uses high-resolution rock images ob-
tained using micro-computed tomography (CT) scans or other im-
aging techniques to calculate structural, geometric, and volumetric
properties of rocks (Fredrich et al., 1993; Keehm et al., 2001; Arns
et al., 2005; Golab et al., 2010; Andrä et al., 2013a). Physics-based
numerical simulations on the rock images are used to obtain proper-
ties such as elastic moduli, conductivity, and flow properties (Arns
et al., 2001, 2002; Keehm et al., 2001; Pinczewski and Lindquist,
2001; Dvorkin et al., 2011; Madonna et al., 2012; Andrä et al.,
2013b; Sain et al., 2014; Saxena and Mavko, 2016; Saxena et al.,
2017a). The physical properties obtained are used in rock-physics

analysis and interpretation of data acquired using remote sensing
techniques, for example, seismic data or well-log measurements.
DRP technology helps to complement the measurements taken in
the laboratory and models derived from empirical trends or effective
medium theories. Using DRP, pore-scale details such as stress hetero-
geneities and the fluid velocity field can be obtained at microscale.
These details are either difficult or infeasible to obtain from labora-
tory measurements and cannot be explained by effective medium
models. DRP technology has the unique ability of setting up a virtual
rock-physics laboratory that allows robust and exhaustive sets of
measurements on the same digital rock sample. DRP techniques
also allow us to analyze rock physics what-if extrapolation scenarios
that can only be carried out using numerical computations.
The success of DRP depends on many factors, including high-

resolution images of the rock, appropriate image segmentation
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and meshing algorithms, proper simulation of
physics, and benchmarking results obtained from
simulations. The use of DRP in understanding
physical phenomenon in rocks depends on the
ability to simulate appropriate physics at the pore
scale. The physics related to structural mechanics
is often used to estimate the effective elastic prop-
erties of a digital rock sample. The calculations
are done using finite-difference or finite-element
methods that treat the solid grains and
the fluid in the pore space as elastic material (Gar-
boczi, 1998; Arns et al., 2002; Zhan et al., 2010;
Andrä et al., 2013b; Saxena and Mavko, 2016;
Saxena et al., 2017b). Assuming pore fluid to
be an elastic material offers insights into the effec-
tive elastic properties under stationary conditions.
This impairs the study of dynamic effects due to
the presence of fluids and pore pressure induced
local and global fluid flow effects. Pore fluids play
a major role in velocity dispersion and attenuation
on the microscopic and macroscopic scales
(Mavko and Nur, 1975; O’Connell and Budian-
sky, 1977; Murphy et al., 1986; Mavko and Jizba,
1991; Sams et al., 1997; Chapman et al., 2002;
Masson and Pride, 2007; Mavko et al., 2009; Gur-
evich et al., 2010; Müller et al., 2010; Quintal
et al., 2011, 2016; Tisato and Quintal, 2013,
2014). These effects impact the elastic measure-
ments obtained from seismic waves. In some re-
cent work, dynamic effects of fluid in the pore
space are modeled by assuming the Newtonian
fluid as a viscoelastic material and assigning a vis-
coelastic model to simulate the dynamic behavior
(Saenger et al., 2011; Wang et al., 2017). Quintal
et al. (2016) use a simple hydromechanical ap-

proach to model coupled fluid-solid interaction (FSI) at the pore
scale. In their work, they solve the quasistatic, linearized Navier-
Stokes’ equation for laminar flow of a Newtonian fluid in the pore
space and the elasticity equation for solid grain. They apply their
method to a 2D geometry and compare their results with those ob-
tained by solving Biot’s equations of poroelasticity (Quintal et al.,
2011, 2014).
The goal of the work presented here was to numerically simulate

a fully coupled FSI at the pore scale for digital rock samples. We
used the finite-element method to model the solid grains as elastic
material using Hooke’s law and the pore fluids as Newtonian fluids
using the Navier-Stokes’ equation with appropriate coupling be-
tween the solid and liquid phases, accounting for inertial effects
in the solid and the fluid. In cases in which the effective medium
theory (EMT) limits were valid (wavelengths longer than the scale
of sample heterogeneities), we calculated the P-wave modulus M
and attenuation Q−1 as a function of frequency. We also used vis-
coelasticity theory to calculate the dynamic P-wave phase velocity
VP usingM and the Q−1 results. The remainder of this paper details
these efforts and is organized as follows. First, we describe the setup
of the numerical experiment. The physics and the boundary condi-
tions that were used to set up the numerical scheme are explained.
We also describe the coupling process between the solid and fluid
that helps to model the FSI. Second, we discuss our application of

Table 1. Material properties corresponding to the grain and pore fluid used in
the numerical simulations.

Grain Pore fluid

Bulk modulus (K) 36.6 GPa Dynamic viscosity (η) 0.486 Pa-s

Shear modulus (μ) 45.5 GPa Reference density (ρ0) at
reference pressure ðP0Þ ¼ 1 atm

860 kg∕m3

Density (ρ) 2650 kg∕m3 Bulk modulus (Kf) 1.02 GPa

Figure 1. (a) The 2D connected cracks geometry with two microcracks perpendicular to
each other. (b) Magnified central part of the mesh for the 2D connected cracks geometry
with the skewness of the mesh elements representing the mesh quality is shown in color.
Points 1 and 2 corresponding to the horizontal and vertical crack, respectively, are high-
lighted. The pressure at these points is analyzed. (c) A further magnified part of the mesh
showing rectangular elements for the pore space and tetrahedral elements for the grain.

Figure 2. The 3D Berea geometry with the grain and the pore
space. Points 1 and 2, corresponding to two parts of the pore space,
are highlighted. The pressure at these two points is analyzed.
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this method to a 2D case with a set of connected
cracks. We use the numerical solutions to calcu-
late and analyze the pressure differences in the
pore space at different frequencies. We compared
the results from this case with the results
obtained by performing a static numerical experi-
ment considering the fluid as an elastic material.
Third, we present a method for estimation of M
and Q−1 from the simulation results, and we use
the estimated values to calculate VP dispersion
curve at the EMT limit. Fourth, we present a
parametric study that sheds light on the effects
of the pore aspect ratio and viscosity of the fluid
on the simulation results. Finally, we discuss our
application of the method to a 3D digital rock
sample of Berea sandstone in which the pressure
in the pore space was calculated at different
frequencies.

NUMERICAL SETUP

In this work, we considered the grain as an elastic material and
the pore fluid as a compressible Newtonian fluid with density
varying as a function of pressure derived using the definition of
compressibility of a fluid (equation 1):

ρ ¼ ρ0ð1þ ðP − P0Þ∕KfÞ; (1)

where ρ is the density of fluid, ρ0 is the reference density of the fluid
at reference pressure of P0, andKf is the bulk modulus of fluid. The
properties of the material in grain and the pore (Table 1) are kept the
same for all of the simulations, except in the parametric study in
which the viscosity of the fluid is changed to assess its impact
on the dispersion curves.
The equation of motion along with the constitutive relation for

the material is solved for the solid grain to compute stresses and
strains. We assume a linear isotropic elastic material for the solid
part, for which the constitutive relationship is given by Hooke’s law
(equation 2):

σij ¼ λδijϵαα þ 2μϵij; (2)

where σij and ϵij are the elements of the stress and strain tensor,
respectively, and λ and μ are the Lame’s constants. The equation
of motion is given by Newton’s second law of motion, which is
formulated in the spatial domain using the Cauchy stress tensor
σ. We account for the mass effects in the dynamic behavior of
the solid by incorporating the inertial terms. The equation of motion
is given by ρð∂2u∕∂t2Þ ¼ ∇:σ ¼ divσ. For the pore fluid, we com-
pute the pressure and velocity fields by solving the compressible
form of the Navier-Stokes’ equation (equation 3) for conservation
of momentum:

−∇Pþ ∇ · ðηð∇vþ ð∇vÞTÞ − 2

3
ηð∇ · vÞIÞ þ F

¼ ρ
∂v
∂t

þ ρv · ∇v; (3)

where P is the pore pressure, η is the dynamic viscosity, v is the
fluid velocity vector, F is the volume force vector, ∇ is the spatial

Figure 3. (a) Unstructured tetrahedral mesh for the 3D Berea geometry with skewness
of the mesh elements representing the mesh quality shown in color. (b) Inside view of the
mesh showing that the grain is meshed with coarse elements and the pore space is
meshed with finer elements. The meshing at the interface between the solid and pore
is shown in this view.

Figure 4. (a) Solid pressure and pore pressure obtained for station-
ary structural mechanics numerical simulation considering the pore
fluid as an elastic material. (b) Solid pressure and pore pressure ob-
tained from low-frequency (1 Hz) coupled FSI numerical simula-
tion at the last time step. The “figures” are not the same; rather, the
pressures in both cases are the same, indicating that the FSI solution
at low frequency matches the stationary solution considering the
fluid as an elastic material.
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gradient, ρ is the density, and t is the time. We solve the continuity
equation (equation 4) for the conservation of mass:

∂ρ
∂t

þ ∇ · ðρvÞ ¼ 0; (4)

where∇ is the spatial gradient, ρ is the density, t is the time, and v is
the velocity.
The boundary conditions for the numerical experiment are set to

simulate a P-wave modulus experiment as follows. The bottom face
of the model is fixed with zero displacement; the side faces have a

roller boundary condition, in which the displacement normal to the
face is zero. The top boundary is assigned a sinusoidal displacement
u normal to the face as a function of frequency f (equation 5):

u ¼ 10−9 � sinð2πtfÞ; (5)

where u is the displacement, t is the time, and f is the frequency. In
total, five cycles of the displacement are applied in each case for the
numerical solution to reach a steady state. The fifth cycle is ex-
tended such that the last time corresponds to the maximum displace-
ment. In this work, we only consider the undrained pore volume.

Hence, a no-flux boundary condition is used for
the fluid. The two-way coupling between the
solid grain and the pore fluid is done using an
arbitrary Lagrangian-Eulerian method (Donea,
1982) to combine the fluid flow that is formu-
lated in the Eulerian domain (spatial frame),
and the solid mechanics formulated in the La-
grangian domain (material frame). The solid dis-
placement is coupled to the fluid velocity at the
interface between the two domains (equation 6):

vwall ¼
dusolid
dt

; (6)

where t is the time, vwall is the velocity of the wall,
and usolid is the displacement of solid at the inter-
face between the solid and fluid domains. The ini-
tial values of structural displacement for the solid
grain are zero. The initial values of pore fluid
velocity and pressure are zero. The reference
pressure and temperature for the Navier Stokes’
equation in the pore fluid are taken as 1 atm
and 273 K, respectively. We perform a 2D plain
strain approximation for 2D geometry in which all
out-of-plane strain components of the total strain
are zero.
We considered two geometries in this work.

The first is a 2D section with two connected cracks
and referred to in this paper as 2D connected crack
geometry. The connected crack geometry has two
planar rectangular cracks with a crack length of
0.3 mm, crack width of 0.001 mm, and an aspect
ratio of 1:300 for each crack. We also performed a
parametric study by numerically simulating two
other cases: one by changing the crack length
to 0.1 mm and another by changing the crack
width to 0.01 mm. In these two cases, the crack
aspect ratios are 1:100 and 1:30, respectively. Un-
less otherwise specified, the 2D connected crack
geometry refers to the case with a crack aspect
ratio of 1:300. The pore space is enclosed by a
0.4 × 0.6 mm rectangle that forms the solid grain
(Figure 1a). The porosity of the 2D connected
crack geometry is approximately 0.25%. This sim-
ple 2D geometry (based on Quintal et al., 2016) is
used to understand the physics and establish the
numerical setup before being simulated on a com-
plex geometry. The crack orientations are arranged
such that, based on the applied vertical displace-

Figure 5. Solid pressure and pore pressure at the last time step obtained from coupled
FSI numerical simulations at frequencies of (a) 1 kHz, (b) 100 kHz, (c) 1 MHz, and
(d) 100 MHz. The high and low values are represented by warm and cool colors, re-
spectively. Pore pressure heterogeneities can be observed at higher frequencies.
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ment, one of the cracks is more compliant than the other. This geom-
etry helps to induce a pore-pressure difference between the two
cracks. The second geometry is a 3D micro-CT scan of a Berea sand-
stone of dimensions 0.36 × 0.36 × 0.36 mm (Fig-
ure 2) and is referred to here as Berea geometry.
The porosity of the sample is approximately 10%.
The whole sample is enclosed in a cube of 0.4 ×
0.4 × 0.4 mm that helps in the application of the
boundary conditions for the numerical calculation.
Each of these geometries is discretized using an
unstructured mesh with mostly tetrahedral ele-
ments. We used rectangular elements for the pore
space in the connected cracks geometry with five
elements covering the width of the pore space to
resolve the geometry. In general, the mesh has fi-
ner elements in the pore space than the grain to
capture the microstructure. The mesh for the 2D
connected crack geometry (Figure 1b and 1c)
has approximately 8000 elements, and the mesh
for the Berea geometry (Figure 3) has approxi-
mately 327,000 elements.
The total number of degrees of freedom solved

in the 2D connected cracks geometry is approx-
imately 33,500, whereas the total number of
degrees of freedom in the Berea geometry is ap-
proximately 1,245,000. A quadratic Lagrange
shape function is used for the solid displacement,
and P1 (linear) shape functions are used for the
fluid velocity field and pressure. We used the
COMSOL Multiphysics finite-element solver to
solve the time-dependent initial-boundary value
problem. Coupled FSI problems can be solved
numerically using a fully coupled direct solver
approach or using an iterative solver. Direct
solvers are more robust but require more
memory. For the 2D problem, we used a time-de-
pendent fully coupled solver (commonly known
as the monolithic approach). A direct PARDISO
solver (Petra et al., 2014) is used for solving the
linear equations for the 2D connected cracks
geometry case. An iterative geometric multigrid
solver (Briggs, 2000) is used to solve the linear
equations for the Berea geometry case as the
number of degrees of freedom in this case is very
large, limiting the use of a direct solver. The con-
vergence criteria for both cases are based on the
relative tolerance or error in the integration step.
A lower value of the relative tolerance will ensure
more accuracy in the solution, but it will also in-
crease the computation time. Here, we used a rel-
ative tolerance value of 0.01 for the 2D cases and
0.1 for the 3D cases. The computations were
done on a Dell Workstation Precision T7600
with an Intel Xeon 3.1 GHz (32 CPUs) processor
and 128 GB RAM. The computation time for
the 2D geometry for each frequency is approxi-
mately 2 min, and for the 3D geometry it is
approximately 40 min. We performed EMT ap-
proximations to calculate the effective M, Q−1,

and VP at frequencies at which the approximations are valid.
Details of the calculations used in our work are described in
Appendix A.

Figure 6. Pore pressure as a function of time for the points — points 1 and 2 for 2D
connected cracks geometry obtained from the coupled FSI numerical simulations at
frequencies of (a) 1 kHz, (b) 100 kHz, (c) 1 MHz, and (d) 100 MHz.

Figure 7. Average stress versus average strain at the top boundary of the 2D connected
cracks’ geometry obtained from FSI numerical simulations at frequencies of (a) 100 kHz,
(b) 1 MHz, and (c) 100 MHz. The average stress and strain reach a steady state solution at
the end of the displacement cycle at frequencies corresponding to the EMT limits. At
100 MHz frequency, the average stress and strain do not have a steady state solution.

Coupled FSI at pore scale WA75
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RESULTS

2D connected cracks geometry

We first performed the numerical simulation on the 2D connected
cracks geometry for the low-frequency case by applying a boundary

displacement at a frequency of 1 Hz. The pressure in this case is
expected to be homogeneous and to follow the assumptions men-
tioned in Gassmann (1951). We compare the pore pressure in this
low-frequency case with the numerical simulation in which the pore
fluid is considered an elastic material with elastic properties compa-

rable to the pore fluid mentioned in Table 1. The
pressure (at the last time step) in the solid grain
and the pore fluid (Figure 4a) is comparable to
the pressure obtained from the solid mechanics
simulation (Figure 4b). This helps in establishing
our numerical scheme. Numerical simulations that
approximate the pore fluid as an elastic material
cannot handle dynamic effects due to the pore
fluid flow; hence, the pore pressure is always
homogeneous, approximating very low-frequency
conditions. The elastic moduli calculations using
these simulations correspond to the Biot-Gass-
mann low-frequency limit. Second, we carried
out the simulations for a sweep of frequencies
ranging from 1 Hz to 100 MHz — that spans the
effective medium and the non-effective medium
frequencies for this 2D geometry. The pore
pressure and the pressure in the solid for some of
the frequencies (1 kHz, 100 kHz, 1 MHz, and
100 MHz) are shown in Figure 5a–5d. The pore
pressures at the two points, point 1 corresponding
to the horizontal crack oriented toward the maxi-
mum normal stress given the boundary conditions
and point 2 corresponding to the vertical crack
oriented away from the maximum normal stress
given the boundary conditions (Figure 1) are
shown for different frequencies (1 kHz,
100 kHz, 1 MHz, and 100 MHz) in Figure 6a–
6d. The pore pressure at these two points is in
equilibrium at lower frequencies in the kHz range
(Figure 6a) because the fluid gets ample time to
flow from the high-pressure zones in the compli-
ant horizontal crack to the low-pressure zones in
the vertical crack. At higher frequencies of the or-
der of MHz, we observe that the pore pressures at
points 1 and 2 are no longer in equilibrium (Fig-
ure 6b and 6c). At these higher frequencies, the
pore fluid does not have enough time to move
from the high-pressure to the low-pressure areas
in the cracks. At very high frequencies of the order
of 100 MHz, the wavelength of the displacement
applied at the top is comparable to or less than the
size of the sample. As a result, we can observe
wave propagation in the sample and scattering ef-
fects that lead to large pore pressure hetero-
geneities (Figure 6d). The EMT calculations are
not applicable at such large frequencies. The aver-
age stresses and strains at the top boundary of the
sample calculated from the simulation results for
different frequencies (Figure 7a–7c) show that the
average stress and strain reach a steady state for all
frequencies except when the frequency is very
high (Figure 7c). At this high frequency, scattering
and resonance effects predominate and the EMT

Figure 8. One cycle of average stress versus average strain at the top boundary of the 2D
connected cracks’ geometry obtained from FSI numerical simulations at frequencies of
(a) 1 kHz, (b) 10 kHz, (c) 40 kHz, (d) 70 kHz, (e) 100 kHz, and (f) 1 MHz.

Figure 9. (a) Effective P-wave modulus versus frequency obtained from results of
FSI-based numerical simulations using EMT. The effective P-wave modulus obtained
using numerical simulation considering fluid as an elastic material is also overlaid. This
P-wave modulus corresponds to the lower limit or one obtained using Gassmann’s ap-
proximations. (b) Effective attenuation (Q−1) versus frequency obtained from results of
FSI-based numerical simulations using EMT.
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approximations are invalid. The phase differences between one cycle
of the average stress and average strain for some of the frequencies
(1 kHz, 10 kHz, 40 kHz, 70 kHz, 100 kHz, and 1 MHz) correspond-
ing to the EMT approximations are shown in Figure 8a–8f. At a
frequency of 1 kHz, the average stress and strain are in phase (Fig-
ure 8a). However, as we increase the frequency, we observe that the
phase difference between the average stress and strain first increases
and then starts to decrease (Figure 8b–8e). At a high frequency of
1 MHz, we start observing scattering effects in the average stress
and strain (Figure 8f). The average stress and strain were used to cal-
culate theM,Q−1, and VP for the frequencies in which EMTapprox-
imations are valid using the method described in Appendix A. The
real part ofM, also known as storage modulus (Figure 9a), shows the
maximum dispersion at approximately 50 kHz, which corresponds to
the Debye peak in the calculated Q−1 curve (Figure 9b). The calcu-

lated VP (Figure 10) also shows the dispersion with the lower limit at
approximately 5200 m∕s, which matches the value obtained using
Gassmann’s approximation and the higher limit at approximately
5800 m∕s. Similar calculations were made by changing the viscosity
of the pore fluid by orders of magnitude. The normalized VP for dif-
ferent pore-fluid viscosities (Figure 11) shows that the dispersion
curve shifts toward lower frequencies as the viscosity of the pore fluid
is increased. As a result, for viscous fluid, e.g., heavy oils, we can
expect the dispersion effects at lower frequencies in contrast to rocks
saturated with water or gas. We also carried out a parametric study by
changing the aspect ratio of the cracks forming the pore space. The
normalized VP calculated for different aspect ratios (Figure 12) show
that the dispersion curves move toward the lower frequencies as the
aspect ratio of the microcracks is decreased. Based on this result, we
can conclude that microcracks that are difficult to image and resolve in
the digital rock samples when saturated with fluids can have signifi-
cant dispersion effects at lower frequencies.

Berea sandstone

The numerical method established using the 2D-connected-crack
geometry was applied on a 3D digital rock sample of Berea sand-
stone. The simulations were done for a sweep of frequencies rang-
ing from 10 Hz to 100 MHz, which spans the effective medium and
the noneffective medium frequencies for this 3D sample. The pore
pressure at the last time step is shown for some of the frequencies
(1 kHz, 100 kHz, 10 MHz, and 100 MHz) in Figure 13a–13d. The
fluid velocity fields for the unrelaxed state at frequencies of 10 and
100 MHz are also represented by the black arrows in Figure 13c
and 13d. The pore pressure at the points 1 and 2 shown in Figure 2
is plotted for various frequencies (1 kHz, 100 kHz, 10 MHz, and
100 MHz) in Figure 14a–14d. The coefficient of variation of pore
pressure at the last time step is plotted as a function of frequency in
Figure 15. Our results show that at low frequencies, the pore pres-
sure is homogeneous throughout the pore space. However, the pore
pressure at high frequency is heterogeneous. This pressure hetero-
geneity leads to the local fluid flow, in which the fluid starts to flow
from the high-pressure areas to areas of low pressure in the pore
space. The calculations for effective medium M, Q−1, and VP were
also carried out for frequencies in which the EMT approximations
were valid. Note that the Berea sample used in our simulations is

Figure 10. Effective P-wave phase velocity versus frequency ob-
tained from the effective P-wave modulus and the attenuation
(Q−1) values. The effective P-wave phase velocity corresponding
to Gassmann’s approximation obtained using the numerical simu-
lation considering the fluid as an elastic material is overlaid.

Figure 11. Normalized P-wave phase velocity versus frequency for
fluids with different viscosities (in Pa-s) obtained using FSI-based
numerical simulations. The dispersion curves shift to lower frequen-
cies with the increase in fluid viscosity.

Figure 12. Normalized P-wave phase velocity versus frequency for
pores with different aspect ratios obtained using FSI-based numeri-
cal simulations. The dispersion curves shift to lower frequencies
with the decrease in the aspect ratio of the microcracks.

Coupled FSI at pore scale WA77

D
ow

nl
oa

de
d 

03
/2

5/
20

 to
 7

3.
15

1.
20

0.
13

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

https://library.seg.org/action/showImage?doi=10.1190/geo2018-0488.1&iName=master.img-009.jpg&w=208&h=190
https://library.seg.org/action/showImage?doi=10.1190/geo2018-0488.1&iName=master.img-010.jpg&w=192&h=157
https://library.seg.org/action/showImage?doi=10.1190/geo2018-0488.1&iName=master.img-011.jpg&w=190&h=147


small in dimension and may not be a representative elementary vol-
ume. We found that the lower and upper limits of the VP dispersion
curve are approximately the same, given the microstructure and the
material properties. The upper and lower limits of the real part ofM
calculated using the average stress and strain at the top boundary are
approximately 77 GPa and did not show significant dispersion.

DISCUSSION

We established a numerical method to conduct multiphysics FSI
simulation for digital rock samples, and captured the physics related
to FSI at the pore scale, including solid and fluid inertial effects. The
method provides greater insights into the dynamic effects of the
presence of pore fluid at different frequencies. At low frequencies
(10 Hz), the pore fluid is in equilibrium and the pore pressure is
homogeneous. At higher frequencies (100 kHz), pore-pressure

heterogeneities were observed. At very high frequencies (100 MHz)
in which the wavelength of the applied displacement is smaller
(approximately 1/100th) than the size of the sample, we observed
wave propagation and scattering effects in the solid and the pore
fluid. Thus, we can conclude that the pore fluid effects become
prominent at the higher frequencies and that the dynamic effects
of the fluid in digital rock samples can only be studied by consid-
ering the coupled simulation approach. We also calculated the ef-
fective M, Q−1, and VP using EMT approximations. A Debye peak
in the Q−1 curve for the 2D connected cracks geometry occurred at
approximately 50 kHz. Our parametric studies showed that the VP

dispersion curves shift to lower frequencies as we increase the fluid
viscosity or decrease the aspect ratio of the microcracks. This
behavior is consistent with theoretical rock-physics models. We also
used the proposed numerical method to simulate coupled FSI in a
digital rock sample of Berea sandstone. Our observations for the 3D

Berea sandstone are consistent with the observa-
tions from the 2D connected cracks geometry.
The pore pressure was in equilibrium for the
low frequencies (1 kHz). As we increased the
frequency (10 MHz), the pore pressure was no
longer homogeneous. At higher frequencies
(100 MHz), scattering effects and higher pore
pressure heterogeneities were observed. Our
EMT calculations showed that given the micro-
structure of the 3D Berea sample, we do not have
significant dispersion in M or VP. However, the
2D connected cracks geometry demonstrates that
microcracks that are below imaging resolution
can play a major role in dispersion. Hence, the
dispersion from the microcracks in the 3D Berea
sample may not be observed due to the limita-
tions in image resolution.
A critical aspect in numerical methods is the

selection of appropriate mesh size and time
step size. For the 2D geometry, we ensured that
the thinnest part of the geometry (rectangular
cracks) was resolved by covering the width using
five rectangular elements. A numerical analysis
on the average solid and pore pressure at the
last time step for low frequency (1 kHz) and high
frequency (100 MHz) using a coarser mesh (ap-
proximately 274,000 elements) and finer mesh
(approximately 368,000 elements) as compared
to the mesh used in this study (approximately
327,000 elements) showed that the solution is sta-
ble with the mesh used in this study (Figure 16).
The time step was selected such that each cycle
of the applied sinusoidal displacement consists
of 20 samples to ensure numerical stability of the
solution.
The results from our proposed numerical

method increase our understanding of the stress
heterogeneity and the pore pressure differences
in the digital rock samples. These results can
only be obtained using coupled FSI numerical
experiments and cannot be obtained from stan-
dard laboratory experiments. We found that, at
lower frequencies in which the EMT approxima-

Figure 13. Pore pressure for 3D Berea digital rock sample at the last time obtained using
FSI-based numerical simulations at frequencies — (a) 1 kHz, (b) 100 kHz, (c) 10 MHz,
and (d) 100 MHz. The high and low values are represented by hot and cool colors, re-
spectively. The velocity field at the last time for frequencies (c) 10 MHz and (d) 100 MHz
corresponding to unrelaxed state is plotted with the black arrows.
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tions are valid, the results obtained by considering the mass effects
in the solid are the same as results obtained without considering the
mass effects in the solid. However, at higher frequencies, the stresses
in the solid can be correctly calculated only by considering the in-
ertial effects. Apart from the stress and pore pressure distributions, we
can also obtain dispersion curves for digital rock samples using the
method developed in this study. The dispersion curves will be useful
to understand the differences between seismic measurements taken

at different frequencies — surface seismic (low frequency), borehole
seismic (100 kHz), and laboratory measurements (MHz). The results
give us a better estimation of effective elastic properties of the rock
and the fluid and allow us to develop reliable rock-physics models
that can be used for reservoir characterization workflows.

CONCLUSION

Dynamic fluid effects in the rocks play an im-
portant role in velocity dispersion and attenuation
at different frequencies. Numerical simulations
that account for coupled FSI help us to analyze
and understand these effects. Stress and pore pres-
sure heterogeneities can be obtained using the pro-
posed numerical method. These results can
provide insights into better effective medium
models and can be useful for engineering pur-
poses such as enhanced oil recovery.
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Figure 15. Coefficient of variation of pore pressure at last time step
for 3D Berea obtained from the coupled FSI simulations is plotted
as a function of frequency. The low frequencies at which the pore
pressure is equilibrated has a zero coefficient of variation. The co-
efficient of variation is highest for the scattering domain.

Figure 14. Pore pressure as a function of time for points — points 1 and 2 for 3D Berea
obtained from the coupled FSI numerical simulations at frequencies — (a) 1 kHz,
(b) 100 kHz, (c) 10 MHz, and (d) 100 MHz.

Figure 16. Average solid pressure and average pore pressure at the
last time step for low frequency (1 kHz) and high frequency
(100 MHz) for the 3D Berea geometry showing the base case, and
the fine mesh has similar results.
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APPENDIX A

EFFECTIVE P-WAVE MODULUS M,
ATTENUATION q−1, AND VELOCITY VP

CALCULATIONS

Scale of heterogeneity (d) and the dominant wavelength (λ) de-
termine the regime in which EMT approximations are valid in elas-
tic and viscoelastic media (Marion et al., 1994; Das et al., 2019).
Although EMTapproximations might be valid for λ∕d ≥ 10, here we
assume EMT approximations for values of λ∕d ≥ 100 to avoid any
transition zone from the ray theory to EMT. In the EMT domain,
calculations are done by taking an average of stress and displacement
at the top boundary of the sample. The effective modulus of the
composite is calculated by taking the ratio of the average stress
and strain at the top surface. In the 2D cases, we calculate the average
stress and strain in the y-direction. Strain in the y-direction is calcu-
lated by dividing the average displacement by the length of the sam-
ple in the y-direction. In the 3D cases, we perform similar
calculations in the z-direction. Because the applied displacement
boundary condition at the top surface is given by a sinusoidal func-
tion of time (equation 5), the average stresses and strains at the top
boundary calculated from the simulation results are also sinusoidal
functions having the same frequency as the applied displacement.
However, at higher frequencies, in which the fluid pressures are not
equilibrated, the average stresses and strains at the top boundary will
be out of phase. In the EMT limit, we can assume the composite as an
effective viscoelastic material. The average stress and average strain
can be expressed using theories of viscoelasticity (Lakes, 2009) using
equations A-1 and A-2, respectively:

σðtÞ ¼ σ0 sinð2πftÞ; (A-1)

ϵ ¼ ϵ0 sinð2πftþ ϕÞ; (A-2)

where σ is the stress, σ0 is the stress amplitude, ϵ is the strain, ϵ0 is
the strain amplitude, f is the frequency, t is the time, and ϕ is the
phase difference between stress and strain. The phase difference φ
between the stress and strain can also be expressed in terms of time
lag (equation A-3):

ϕ ¼ 2πft0; (A-3)

where t0 is the time lag between stress and strain that can be calculated
as the difference between the time at which the stress and strain am-
plitudes are maximum. To calculate the frequency dependentM,Q−1,
and VP, we take the Fourier transform of the time-dependent stress
(equation A-1) and strain (equation A-2). The frequency-domain
stress and strain are given in equations A-4 and A-5, respectively:

σðωÞ ¼
ffiffiffi
π

2

r
σ0i½δðω − 2πfÞ − δðωþ 2πfÞ�; (A-4)

ϵðωÞ ¼
ffiffiffi
π

2

r
ϵ0i½e−2πiνt0δðω − 2πfÞ − e−2πiνt0δðωþ 2πfÞ�;

(A-5)

where δ is the Kronecker delta function andω is the angular frequency.
Because the applied displacement is monochromatic, the stress
and strain at that frequency is given in equation A-6 and A-7,
respectively:

σð2πfÞ ¼ σ0i

ffiffiffi
π

2

r
; (A-6)

ϵð2πfÞ ¼ ϵ0i

ffiffiffi
π

2

r
½e−2πift0 �: (A-7)

The complex P-wave modulus M at frequency f can be calculated
using the stress and strain at frequency f and is given in equa-
tion A-8:

MðfÞ ¼ σ0
ϵ0½e−2πift0 �

¼ σ0
ϵ0½cosð2πft0Þ − i sinð2πft0Þ�

: (A-8)

Upon simplification, the real part of M, also known as the storage
moduli, is given in equation A-9, and the imaginary part of M, also
known as the loss moduli, is given in equation A-10:

ReðMÞ ¼ σ0
ϵ0

cosð2πft0Þ ¼ σðt1Þ
ϵðt1Þ

; (A-9)

where t1 is the time at which the strain has maximum amplitude

ImðMÞ ¼ σ0
ϵ0

sinð2πft0Þ: (A-10)

The term Q−1 can be calculated by taking the ratio of the ImðMÞ and
ReðMÞ (equation A-11):

Q−1 ¼ sinð2πft0Þ
cosð2πft0Þ

¼ tanðϕÞ: (A-11)

The term VP can then be calculated using equation A-12:

v ¼ v0

�
2ð1þ ðQ−1Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQ−1Þ2

p
þ 1

�
1∕2

: (A-12)
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