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H I G H L I G H T S

• The first large labeled methane leak video dataset (GasVid) was collected.

• The first deep-learning-based methane detection method (GasNet) was developed.

• The first detection probability curve of automatic detection system was generated.

• Our automated technology simplifies the leak detection survey with high accuracy.

• The deep learning model was optimized to achieve highest detection accuracy.
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A B S T R A C T

In a climate-constrained world, it is crucial to reduce natural gas methane emissions, which can potentially offset
the climate benefits of replacing coal with gas. Optical gas imaging (OGI) is a widely-used method to detect
methane leaks, but is labor-intensive and cannot provide leak detection results without operators’ judgment. In
this paper, we develop a computer vision approach for OGI-based leak detection using convolutional neural
networks (CNN) trained on methane leak images to enable automatic detection. First, we collect ∼1M frames of
labeled videos of methane leaks from different leaking equipment, covering a wide range of leak sizes
(5.3–2051.6 g CH4/h) and imaging distances (4.6–15.6 m). Second, we examine different background subtrac-
tion methods to extract the methane plume in the foreground. Third, we then test three CNN model variants,
collectively called GasNet, to detect plumes in videos. We assess the ability of GasNet to perform leak detection
by comparing it to a baseline method that uses an optical-flow based change detection algorithm. We explore the
sensitivity of results to the CNN structure, with a moderate-complexity variant performing best across distances.
The generated detection probability curves show that the detection accuracy (fraction of leak and non-leak
images correctly identified by the algorithm) can reach as high as 99%, the overall detection accuracy can
exceed 95% across all leak sizes and imaging distances. Binary detection accuracy exceeds 97% for large leaks
(∼710 g CH4/h) imaged closely (∼5–7m). The GasNet-based computer vision approach could be deployed in
OGI surveys for automatic vigilance of methane leak detection with high accuracy in the real world.

1. Introduction

Natural gas plays a significant role in the global energy system. In
the United States, natural gas is now the largest single energy resource,

accounting for 31.8% of energy production in 2017 [1]. Advanced and
cost-effective drilling and production techniques like hydraulic frac-
turing and horizontal drilling have stimulated increased natural gas
production from shale formations [1,2]. The coupling between natural
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gas systems and electricity systems has been increasing with rising
deployment of gas-fired power plants and gas-fired combined heat and
power systems [3–8]. Increasing residential and commercial heating
demand also contributes to growing natural gas consumption and
production [9]. This expansion has had climate benefits: due to de-
creases in the cost of gas and renewables, coal consumption for power
generation in the U.S. has dropped from 39.0% in 2010 to 29.9% in
2017 [10]. Furthermore, gas use in the power sector will likely continue
to rise even in high renewable energy systems: spare capacity of fast-
ramping natural gas power plants can compensate for variability in-
troduced by wind and solar plants [11].

However, there is a debate over the role of natural gas in a low-
carbon future [12–17]. Upon combustion, natural gas causes lower
climate and air quality damages than coal. However, the loss of natural
gas may exert a negative effect on the climate due to the high global
warming potential (GWP) of methane (36 times more potent per kg
than CO2 over 100 years [18]). Recent experimental work has high-
lighted important features of methane emissions from the oil and gas
industry. First, methane emissions are generally underestimated by
official inventories [19,20]. Second, experiments should be designed to
understand large but intermittent or infrequent sources, which could
make up a large portion of emissions, even though they are hard to
sample during conventional surveys [21,22]. Finally, natural gas
emission volumes are highly skewed: the largest 5% of leaks account for
approximately 50% of the total emissions [23].

Regulatory approaches to reduce fugitive emissions in the US and
Canada typically require periodic leak detection and repair (LDAR)
surveys at oil and gas facilities. LDAR surveys typically use EPA
(Environmental Protection Agency) Method-21 or manually-operated
infrared (IR) optical gas imaging (OGI) technologies to detect leaks
[24,25]. An open-source model – the Fugitive Emissions Abatement
Simulation Toolkit (FEAST) – allows simulation-based comparison of
different LDAR technologies and programs [26].

Because of its ease of use, IR OGI cameras have become the most
commonly used LDAR technology. Gas plumes can be visualized in the
IR camera: absorptive plumes look black and emissive plumes look
white. Despite its widespread use, OGI performance is affected by en-
vironmental conditions, operator experience, survey practices, leak size
distributions and gas composition [27]. We recently experimentally
derived detection probability curves for OGI-based methane leak de-
tection under real-world conditions and found that the median and 90%
detection likelihood limit follow a power-law relationship with imaging
distance [28].

Despite the usefulness of OGI, a number of fundamental challenges
exist: (1) labor costs for manual OGI surveys are high [29], (2) con-
tinuous monitoring with IR cameras is infeasible, (3) IR cameras cannot
provide real-time feedback of leak detection results without operators’
judgement, and (4) the quality of survey varies between different OGI
operators [30,31].

To address these challenges, in this paper we explore computer vi-
sion approaches based on convolutional neural networks (CNNs) that
are trained to examine IR images to determine whether there is a me-
thane leak or not. Such computer vision approaches, if successful,
would allow automatic leak detection and remove uncertainty asso-
ciated with operator experience. There are few automated leak detec-
tion products currently available, and there is a lack of scientific and
systematic analysis of the limits and effectiveness of automated OGI-
based technology. We aim to fill some of these gaps in this paper.

Our method for automatic detection from IR images of methane
leaks is developed in five stages. First, we build a novel video dataset of
methane leaks, GasVid, which includes large numbers of labeled videos
of methane leaks with associated leak sizes from different leak locations
and imaging distances. Second, we systematically test background
subtraction methods and develop a state-of-the-art CNN model called
GasNet to identify leaks from video frames. Third, we derive the
probability of correct assessment by the automatic OGI-based methane

detection under different imaging distances, leak sizes and environ-
mental conditions. Fourth, we test three CNN model variants and
compare the results from the CNN-based analysis with conventional
optical flow algorithms. Finally, we also compute the detection accu-
racy (fraction of leak and non-leak images correctly identified by the
algorithm) results for the dataset at each distance and for the entire
dataset among all distances. The produced detection probability curves
will be the first scientific guidance for the use of the automated OGI-
based technology under different leak sizes and distances.

2. Related work

2.1. OGI

Some challenges faced by OGI technology have been discussed in
the section of introduction, but there are still a few more we need to
address. (1) Imaging distance greatly affects the performance of OGI
[27]. Evidences show that imaging at further than ∼10m would lar-
gely reduce the effectiveness of OGI [27]. (2) Environment conditions
are also factors that should be taken into account, including wind
speed, wind orientation [31], and temperature contrast [27]. (3) Cur-
rently, very few commercial products allow for automatic leak detec-
tion using video imagery. ExxonMobil Research Qatar, in partnership
with Providence Photonics, developed an add-on to the existing FLIR IR
camera that achieves autonomous remote detection of hydrocarbon
plumes [32]. Another company, Rebellion Photonics, uses a more so-
phisticated hyper-spectral imaging camera that can distinguish between
different gas species and claims to tell the detection results in real time
[33]. (4) Traditional IR camera can only provide qualitative detection
results. Even though the product of Providence Photonics can realize
leak size quantification based on IR camera [34], no results have been
published in a peer-review journal. A new camera-based system, hy-
perspectral IR camera, can quantify the leak plume by measuring
continuous spectral bands for each pixel in the image. [35].

2.2. Smoke detection

There are a large number of studies on smoke detection published
by researchers in the field of image processing and computer vision.
Methane plumes share many similarities with smoke in terms of non-
rigidity, dispersion, color attenuation and blending, and irregularities
in motion. But methane plumes and smoke are captured by different
types of cameras: methane plumes are seen in grayscale and can only be
seen by infrared cameras; smoke is imaged in RGB (red, green and blue)
colors and can be seen by conventional visual spectrum cameras.

Common image-based smoke emission detection approaches include
color modeling, change detection, texture analysis and machine
learning models [36]. The four models are reviewed and compared in
the following discussion.

(1) The color modeling method is based on color saturation or
image intensity value distribution. Smoke pixels can be detected as they
have relatively lower color saturation [37,38]. (2) Change detection
algorithms are used to automatically detect changes or movements
[39]. Recently, optical flow-based method has been used to examine the
optical flow field entropy, glimmer pixels outlining the edge, and finally
help determine the background [40,41]. (3) Texture analysis can utilize
either a single image or a sequence of images. Feature vectors are
gained by performing wavelet transform or other texture descriptors,
providing inputs for classifier training [41,42]. (4) Lastly, machine vi-
sion techniques for smoke detection are also discussed in the literature.
Application of CNNs in detecting smoke is discussed in the paper by
[43–45].

2.3. Deep learning

Deep learning has been widely used in the energy and
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environmental field [46], including solar prediction [47,48], wind en-
ergy forecasting [49,50], electricity price forecasting [51], building
energy forecasting and optimization [52–54], etc. However, there is a
paucity of research on application of deep learning in methane emission
detection.

In this paper, we will use deep learning approaches to perform
image analysis of methane leaks imaged using a FLIR GF-320 infrared
camera. Instead of using hand-crafted features in traditional machine
learning approaches, deep learning automatically calculates hier-
archical features of the input data in order to accomplish tasks such as
object detection, speech recognition, video classification, etc. Usually in
deep learning, there are multiple layers. The first several layers learn
low-level features, such as points, edges and curves in the input data.
Deeper layers can learn higher-level features that help the algorithm
perform in a way similar to a human thought process [55]. CNN, a type
of deep architecture, have been found to be highly powerful in image
recognition and object detection [56]. There are many sophisticated
CNN models, such as AlexNet, VGG, Inception, and ResNet [56–59].
While these models differ in many respects, they all consist of an input
layer, several hidden layers and an output layer. The hidden layers
usually have Conv-Pool (layer-pooling layer) structures, in which layers
apply a convolution operation to the input and deliver the result to the
next layer, and then pooling layers subsample the output of the layer
and reduce the dimensionality of the data. The hidden layer could also
be a fully-connected layer to connect every neuron in the former layer
to every neuron in the latter layer. At the end, the output layer, usually
a fully-connected layer, estimates the regression result or the classifi-
cation score for each class.

3. Datasets-GasVid

CNNs require large numbers of data samples to train a network of
deep learning. Therefore, in order to apply CNN to detecting methane
leaks, we have begun building a large dataset named GasVid, which
includes labeled videos of methane leaks from various leakage sources
covering wide range of leak sizes. In all GasVid video segments, the
actual leak rate is known and listed. Videos were taken across a range of
environmental conditions, camera orientations, and imaging distances,
representing a realistic range of leak scenarios.

We generated GasVid with controlled-release experiments at the
Methane Emissions Technology Evaluation Center (METEC) at
Colorado State University in Fort Collins from July 10 – July 14 2017.
METEC, funded through the ARPA-E’s Methane Observation Networks
with Innovative Technology to Obtain Reduction (MONITOR) program,
is a controlled-release test facility that mimics real-world gas leaks
found at natural gas production sites. At the time of the study, METEC
contained>50 metered leak sources made from 1/4″ steel tubing.
Operators control the flow rate by adjusting the orifices and the regu-
lated gas pressure controlled at a central pressure regulator connected
to high pressure compressed natural gas.

All videos were taken at METEC by the authors J.W. and A.P.R.
Between July 10 and July 14, we collected a total of 31 24-min videos
at separators (frame rate is ∼15 frames per second, resulting in
∼669,600 frames in total were recorded). We collected videos not only
from separators, but also from tanks. At tank leaks, a total of ∼345,600
frames were recorded, but poor orientation of the leak and camera lo-
cation rendered these videos un-usable. Separator videos were recorded
at two point-source leak locations: separator on pad 1 (13 videos), se-
parator on pad 2 (18 videos) at imaging distances between 4.6m and
15.6 m. Data from separator 2 (separator on pad 2) is used for training
and validating the CNN models, while data from separator 1 (separator
on pad 1) is exclusively used for testing. In all experiments, a tripod-
mounted FLIR GF-320 IR camera operating in the normal mode (not
high sensitivity mode) was used to record the leak. Each video was
taken with a unique combination of distance and camera orientation.
There are 5 imaging distances in total: 4.6 m, 6.9 m, 9.8 m, 12.6 m and

15.6 m. Within the 24-min-video, eight size classes (including zero) of
leaks with flow rate ranging from 5.3 to 2051.6 g CH4/h (0.3–124.4
standard cubic feet per hour, or scfh) were recorded in 3-min interval as
shown in Table 1.

In every 3-min leak video, the plume may not be steady at the be-
ginning and the end. Therefore, we cut the first 15 s and the last 5 s of
each 3-min-video. One frame of the video has a dimension of
240× 320×1, indicating that the image is in grayscale.

As this is a first study, we include simple testing conditions. A tripod
was used to avoid extraneous camera movement which may confuse the
algorithm. We also exclude interference from cars, people. Our videos
do not include moving vegetation, vapor and steam, which are possible
in the real world. In addition, the largest leak does not occupy the entire
field of view of the camera even at the shortest imaging distance, al-
lowing us to capture the shape of the entire plume. Future studies can
be performed to relax these idealities.

Fig. 1a and b illustrate the leak locations on separator 1 and se-
parator 2 respectively. The top row of images in Fig. 2 shows re-
presentative frames from five different leak classes on separator 2, with
associated leak rates. The bottom row of images in Fig. 2 shows re-
presentative frames from a class-4 leak on separator 2 at different
imaging distances. As the imaging distance increases, the plume be-
comes challenging to observe.

All the videos were recorded directly on the camera itself instead of
using FLIR ResearchIR Software (an IR camera control and analysis
software). This lowers the resolution of the videos due to on-camera
compression. There were also occasional clouds appearing in the field
of view of the camera (see Fig. 2d and e). Usually clouds are moving
and changing at a low speed and thus clouds would ideally be removed
by a suitable background subtraction method. Lastly, wind speed and
wind orientation affect the appearance of methane plume on images
and were not controlled during the experiment.

4. Method

In this section, we outline the workflow of our automatic detection
algorithm. We introduce three background subtraction methods, one
image normalization method, and three CNN model variants. We also
explicitly explain the CNN model. Finally, a baseline model that does
not use CNN is described as a point of comparison for the accuracy of
the results.

4.1. Workflow

The probability curve of correct assessment by the automated OGI-
based technology (a systematic way to examine the technology efficacy)
is generated with 7 possible binary classification cases. Each binary
classification classifies an image as a non-leak image or a leak image
from one of the 7 leak classes. This is performed at each of the 5
imaging distances. Thus, in our base case, there are 35 cases re-
presenting the binary classification accuracy results of 35 independent
trained experiments under different distances and leak sizes on the

Table 1
Leak rates and the associated leak classes recorded from each imaging distance
and leak source. Leak rates reported with error at 95% confidence interval (CI).

Leak class label Leak rate in scfh (±95% CI) Leak rate in g/h (±95% CI)

Class 0 0.3 ± 0.0 5.3 ± 0.1
Class 1 16.8 ± 0.1 277.7 ± 1.1
Class 2 43.2 ± 0.2 713.1 ± 2.6
Class 3 58.1 ± 0.2 958.8 ± 3.1
Class 4 68.1 ± 0.3 1124.3 ± 4.3
Class 5 84.2 ± 0.3 1389.8 ± 4.8
Class 6 109.5 ± 2.5 1806.1 ± 41.4
Class 7 124.3 ± 2.9 2051.6 ± 48.0
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curve (we explore training with all datasets across leak sizes and dis-
tances at once below).

Each of 35 independent trained experiments is conducted using the
same workflow. Still frames are first extracted from the videos and
coupled with the associated class labels. The extracted images are pre-
processed through background subtraction and image normalization.
The processed images are individually fed into the trained CNN de-
tection module. Finally, the accuracy of prediction is calculated as the
fraction of images correctly identified by the algorithm.

Fig. 3 includes a list of key processes we followed in this study,
including data acquisition, image preprocessing (background subtrac-
tion followed by image normalization), application of deep learning
techniques and detection probability curve analysis. Novelties of our
study associated with each process are also discussed.

4.2. Background subtraction methods

Background subtraction is the process of extracting the image
foreground, which is the plume in our case, for further analysis. An
idealized background subtraction method would create an image con-
taining only the plume and no other objects. This would allow the al-
gorithm to localize the plume easily and make the training process
much faster and more accurate. All real background subtraction
methods result in some non-plume features remaining in the image.

We systematically test three background subtraction methods and
compare the results with a baseline method without any background
subtraction. Three background subtraction methods are: (1) fixed
background subtraction; (2) moving average background subtraction;
and (3) Mixture of Gaussians-based (MOG) background subtraction.

In the GasVid dataset, each of the 31 24-min videos contains a 3-min
non-leak video (class 0) at the beginning. For the fixed background
subtraction method, we use the average of all the frames from the class-
0 segment (i.e., non-leaking segment) as the background image for the

corresponding 24-min video at a given imaging distance and camera
orientation. Thus, in the fixed background case, every leak frame from
the video is assumed to have the same background scene.

Instead of having a fixed background for all frames in one video, we
can generate a moving average background for every frame in the video
[36]. Our method creates a background image for each frame as the
median of the previous 210 images. This is equivalent to the median
frame from a moving lagged 14-s-long video. The idea behind moving
average background is that smoothing out plume variations over a
multi-second period, we can subtract the background to emphasize the
frame-specific variation in the plume.

The Mixture of Gaussians (MOG)-based background subtraction
involves learning a probabilistic model of each pixel using an appro-
priate number of Gaussian distributions of pixel intensities to identify
static and moving pixels or colors [60]. We use an adaptive background
mixture model which chooses the appropriate number of Gaussian
distribution for each pixel [61,62].

Fig. 4 shows the effect of background subtraction on two frames: the
15000th frame of videos 13 and 14 (a–d and e–h respectively). In video
13 (a–d) the background does not change much over the course of the
video and so all three background subtraction methods result in similar
image foreground. In video 14 a cloud moves onto the frame between
the 3min no-leak video used to generate the static background and the
frame under analysis. In Fig. 4f there is cloud in the image because fixed
average background subtraction does not account for the recent
movement of the cloud. However, Fig. 4g and h, implementing moving
average and MOG-based background subtraction method respectively,
treat the moving cloud as a part of the background and remove it in the
foreground image. It is worth noting that all the background subtrac-
tion results are shown here in inverted colors for better visualization
(the CNN does not use inverted colors).

Fig. 1. (a) Image of a separator on pad 1 with an imaging distance of 9.8 m. (b) Image of a separator on pad 2 with an imaging distance of 9.8 m. The photos were
taken by iPhone which was directly next to the infrared camera shot.

Fig. 2. (a–e): Representative frames showing leak scenarios with five different leak sizes. Note that clouds have moved into the field of view of the camera during
measurement of class-6 and class-7 leaks. (f–j): Representative frames of leak scenarios with leak class 4 (68.1 scfh) from five different imaging distances.
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4.3. Image normalization

Image normalization is a crucial step in deep learning to ensure
every image has similar pixel intensity distribution and to make the
training algorithms converge faster compared to non-normalized input.
For our image datasets, data normalization is performed by dividing
every pixel in the image by 255, which is the maximum value of a pixel
channel in the image.

4.4. CNN model – GasNet

In this paper, we develop our own deep CNN called GasNet, using
TensorFlow software [63]. GasNet is developed to perform binary
image classification that distinguishes between non-leak images and
leak images. Our CNN construction process follows general methods of
building CNN models. Input images pass through some number of Conv-
Pool structures and some number of fully-connected layers. Each Conv-
Pool structure contains a convolutional layer, batch normalization,
Rectified Linear Unit (ReLU) activation function, dropout regularization
and a max pooling laye. In the convolutional layer, the input image is
convolved with filters with a size of 3x3. Batch normalization is used
after convolution, which makes the model train faster and increases its
robustness [64,68]. The ReLU activation function introduces

nonlinearity to the network [64,65]. Dropout is a regularization
method where randomly selected neurons are updated or removed
during training [64,66]. This can help prevent the CNN from overfitting
[64,66]. 2× 2 max pooling is implemented to reduce the spatial size of
the image representation, the number of parameters in the network and
the computational effort [64,67]. The first Conv-Pool structure contains
4 filters while the second contains 8 filters.

After these two Conv-Pool structures, the processed input image is
passed through two fully-connected layers. The first one contains 2400
neurons; the second fully-connected layer contains 32 neurons and
generates outputs for two classes (non-leak and leak). Then a softmax
function is used to produce two probability scores for two classes and
determine the prediction label (0 for non-leak, 1 for leak).

We test three different CNN architectures. Fig. 5 shows the structure
of the moderate complexity version of GasNet, called GasNet-2. We also
construct a simpler version called GasNet-1, which has one Conv-Pool
structure and one fully-connected layer, and a more complex version
called GasNet-3, which contains four Conv-Pool structures and two
fully-connected layers.

4.5. CNN model setup

The Adam optimizer, which is an extension to stochastic gradient

Fig. 3. Summary of key processes and novelty of this paper.

Fig. 4. Top row – (a–d) shows the extracted plume after background subtraction using method (1)–(3) on the 15000th frame of video 13 (class-5 leak with leak rate:
84.2 scfh). The background does not change significantly across frames. Bottom row – (e–h) illustrates background subtraction results by method (1)–(3) on the
15,000th frame of video 14 (class-5 leak with leak rate: 84.2 scfh) in which background shows substantial changes between frames. In video 14, the cloud does not
exist in the non-leak segment, but the cloud starts moving in the leak segments. In Figure f there is moving cloud in the image because of performing fixed average
background subtraction. But from Figure g and h, both method 2: moving average background subtraction method and method 3: MOG-based background sub-
traction method treat the moving cloud as a part of the background and remove it in the foreground image. It is worth noting that all the background subtraction
results are in artificially inverted colors for better visualization.
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descent, is used to calculate the adaptive learning rate for each para-
meter [69].

Table 2 illustrates how we split the training, validation and test
dataset in each experiment. Training data are used for developing the
model; validation data are used for tuning the hyperparameters and
balancing the bias and the variance; test data are used to report final
accuracy. 80% of the data from the separator 2 are treated as training
data, and the remaining 20% of the data are treated as validation data.
The test data are never introduced when we train the CNN model, and
the test data are from a different piece of equipment (separator 1),
taken at different times of day, camera orientation, etc. than the
training and validation data.

Accuracy is defined as the fraction of correct binary predictions of
leaks and non-leaks (the sum of true positive fraction and true negative
fraction among all the test data), which is illustrated in Table 3. We also

compute the error bar of each accuracy. Because the test dataset is
large, we split it randomly into 10 folds. Ten accuracy results are
generated by performing the testing process on each of those test set
folds using the same best trained model. The error bar shows the
standard deviation of accuracy across the 10 test set folds.

4.6. Baseline model method

In order to have a model to compare to our CNN, we construct a
method that does not use deep learning. We use optical flow analysis to
calculate a baseline measure of methane plume detection efficacy
[40,41]. Optical flow estimates the apparent motion of objects between
two consecutive frames [70]. In particular, we use Gunner Farnebacks
algorithm – a dense optical flow algorithm – to compute optical flow for
all points in the image [71]. The regions found to be moving will be
assumed to be plume regions. The baseline method applies the moving
average background subtraction method first and then uses the same
setting of training data, validation data, and test data as those in deep-
learning-based models. The baseline method is performed in four steps:

(1) Using the training set, we tune the parameters in Gunner
Farnebacks algorithm in order to make the moving regions match
the plume area visually.

(2) Then we determine two thresholds for this analysis. The first
threshold is the movement magnitude threshold (MMT). If the es-
timated motion speed of a pixel is above the MMT, we consider the
pixel as a moving pixel. Moving pixels are assumed to be plume
pixels. The second threshold is the plume area threshold (PAT). If
the number of moving/plume pixels is larger than the PAT, it in-
dicates a leak plume in the image; if the plume area is smaller than
the PAT, it indicates an image with no leak plumes. By looking at
the motion speed distribution and the distribution of plume areas in
the training data, we determine ranges of these two thresholds to be
explored.

(3) Using the validation set, we loop over the ranges of MMT and PAT
observed in the training set videos. We select during validation the
threshold pair with the highest validation set prediction accuracy.

(4) We use the selected best threshold pair to make leak class predic-
tions on test set and report the accuracy results.

5. Results and discussion

Below we show the results of our algorithms for the 7 leak-no-leak
classification tasks, each performed across 5 imaging distances. In each
case, we plot the accuracy of prediction on the y-axis, starting at 0.5.
Because we test each algorithm on a set of 50% leaks, 50% non-leaks, a
randomly guessing algorithm (“coin flipping”) assigning frames to
leaking and non-leaking states would be expected to be correct 50% of
the time.

In the first set of results, we examine the effect of background
subtraction on the accuracy of the moderate complexity CNN GasNet-2.
In the second set of results we perform the sensitivity analysis on CNN
architecture complexity. In the third set of results, we analyze three
model training aggregation methods on different datasets.

Fig. 5. GasNet-2 deep CNN network architecture diagram.

Table 2
Training, validation and test size for each binary classification case and each
distance.

Distance (m) Size: training
[frames]

Size: validation
[frames]

Size: testing
[frames]

4.6 11,369 2843 9466
6.9 11,362 2841 9467
9.8 11,089 2773 9480
12.6 11,361 2841 9476
15.6 11,367 2842 9483

Table 3
Illustration of detection accuracy calculation. Accuracy equals to the sum of
true positive fraction and true negative fraction among all the test data.

Prediction: non-leak (0) Prediction: leak (1)

True class: non-leak (0) True negative (TN) False negative (FN)
True class: leak (1) False positive (FP) True positive (TP)
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5.1. Results of different background subtraction methods

First we explore the impact of background subtraction method,
holding CNN complexity constant.

Fig. 6 shows the results of the GasNet-2 algorithm applied to the
images with three varying background subtraction methods. For the
without background subtraction method (Fig. 6a), at the closest ima-
ging distance (4.6 m), higher leak size generally leads to higher possi-
bility of accurate assessment. The highest accuracy observed is 82% (we
round the accuracy result to the nearest percent because usually stan-
dard deviation is ∼1–2%). The standard deviations are all below 2.0%,
suggesting that the trained CNN performs similarly across the 10-folds
of the training data. The plume in the videos taken 4.6m away from the
leak source takes up most of the field of view of the camera, and the
non-leak images contain mostly the background sky, so binary classi-
fication is feasible even without background subtraction. However,
performance quickly degrades to near random chance with distance and
decreasing leak size.

For the fixed average background subtraction (Fig. 6b), all the ac-
curacy levels exceed 93% for imaging distances of 4.6m and 6.9 m with
small standard deviation (∼1%). At 9.8m and 12.6m, the corre-
sponding curves show that it is much harder to differentiate between
non-leak and class 1–3 leak sizes, which results in much lower accuracy
compared with 4.6 m and 6.9 m. The accuracy increases with increasing
leak size at the first four imaging distances.

The moving average background subtraction (Fig. 6c) generates
improved accuracy compared to the fixed average background sub-
traction method. At an imaging distance of 4.6 m, the accuracies of all 7
leak combinations are above 97%; similarly, at 6.9m, the accuracies for
differentiating non-leak with leak class of 2–7 are all above 98%. In
these two cases, the accuracy can reach as high as 99%. There is a wider
divergence between the curve representing 12.6 m, 15.6m. Even at

these distances, the accuracy of differentiating non-leak from leak ex-
ceeds 90% for classes 3–7. The standard deviations across the 10 test set
folds of all the 35 cases are lower than 1.6%, except the leak class 1 at
the farthest distance.

MOG-based background subtraction (Fig. 6d) performs better than
the fixed background subtraction method, but inferior to the moving
average background subtraction method. There is little difference be-
tween MOG and moving average methods in the closest two measure-
ments, namely 4.6m and 6.9m imaging distance. However, when the
imaging distance exceeds 10m, the accuracy gap between these two
methods gets wider. On average, at the distance of 9.8 m, 12.6m and
15.6 m, the accuracies of MOG-based background subtraction method
are 3.9%, 3.3% and 6.4% lower than those of moving average back-
ground subtraction method respectively.

Several conclusions can be drawn from Fig. 6. First, it is critical to
implement background subtraction before feeding data into the CNNs.
A large amount of unrelated background information makes the CNN
predictions perform poorly. Second, it is necessary to choose a proper
background subtraction method. In our problem, where the videos are
in grayscale and full of motions of non-rigid body (plume), moving
average background subtraction works best compared to other
methods. However, MOG-based background subtraction have been
found effective in the literature [72,73]. Given our limited dataset,
MOG-based background subtraction method may perform better than
moving average in some cases. By comparing fixed background sub-
traction and moving average background subtraction, the moving
average background subtraction method generates better performance.
This is likely due to the background changing over time in the video.
The moving average background subtraction is a much more effective
way to solve the problem of background change across video frames,
which is particularly true at longer distances where more non-plume
movements would be in the field of view for a fixed lens.

Fig. 6. Probability of correct assessment by training 35 independent GasNet-2 CNN architectures on images with (a) no background subtraction method and three
background subtraction methods: (b) fixed average background subtraction, (c) moving average background subtraction, and (d) MOG background subtraction. For
all methods, accuracy improves with larger leak class. In all cases, a randomly guessing model would obtain an accuracy of 50%. The error bars correspond to the
standard deviation of accuracy across the 10 test set folds.
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Examining the cases where even the moving average background
subtraction method provides relatively lower accuracy could help ex-
plain why the GasNet fails in some binary classification problems. For
example, at the distance of 15.6m, the accuracy for separating non-leak
from class-1 leak is only 56%. This is only slightly better than the
random chance of 50% correct. By human examination, we find it very
difficult to observe these leaks, so the CNN likely has little signal to
train on.

5.2. Results of different architecture

Using the moving average background subtraction method, we next
analyze the sensitivity of our results to changing the deep learning ar-
chitecture. We examine three different architectures – GasNet-1,
GasNet-2 and GasNet-3, explained in Section 4.4. We also use the
baseline method of optical flow and plume area thresholding, again
applied to the frames processed with moving average background
subtraction.

When the imaging distance is small, the plume signal in the images
is strong, making the detection problem easier. From Fig. 7a, we can see
that accuracy of the results from the three CNN architectures are all
high, indicating that the difference among the three architectures is not
significant.

When the imaging distance is large, the signal of whether there is a
plume in the image is relatively weak, adding difficulties to the de-
tection problem. From Fig. 7b, it is clear that GasNet-2 outperforms the
other two architectures. GasNet-1, which has one Conv-Pool structure
and one fully-connected layer, is not complex enough to learn all the
key features for the purpose of differentiating non-leak and leak. The
number of parameters in GasNet-3, which has four Conv-Pool structures
and two fully-connected layers, is 15% larger than that of GasNet-2.
This suggests that GasNet-3 has at least the potential for more com-
plexity and capability to produce higher detection accuracy than
GasNet-2. However, the performance of GasNet-3 does not improve
much over GasNet-2 and even degrades at longer distance, 12.6 m.
GasNet-3 may lack sufficient data to properly train its larger number of
parameters.

In both cases, baseline results have the worst performance, in-
dicating that CNN-based approach is sufficiently sophisticated to ex-
tract essential features from images to differentiate non-leak and leak
and works better than a more traditional optical-flow-based analysis. In
conclusion, GasNet-2, which is a moderate-depth, moderate-complexity
CNN model variant, performs best across distances.

5.3. Results of different model training aggregation methods

We will use both the moving average background subtraction

method and the GasNet-2 architecture in the following analysis, be-
cause the above combination generally works best based on the results
of Section 5.1 and Section 5.2. We train our models using the following
three methods:

Method 1: train 35 models, one for each distance and leak size
combination.

Method 2: train 5 models, one for each distance with all leak sizes.
Method 3: train 1 model for all combinations of leak size and ima-

ging distance.
The performance results of models trained using method 1–3 are

compared in Table 4. In addition to the accuracy at individual imaging
distances, we also report the average accuracy across all distances. At
each distance, a single model trained using method 2 is ∼1.5% better
than the average detection accuracy by 7 small models trained using
method 1. By method 2, the detection accuracy is over 97% at distances
shorter than 9.8m. We also achieve a detection accuracy of 95% for all
distances by method 3, higher than the 94% average detection accuracy
of the 5 models by method 2. We also apply the single model by method
3 to generate the detection accuracy for each distance. In general,
method 2 is better than method 1 at each distance; method 3 is better
than method 2 for all distances and leak sizes; method 3 can sig-
nificantly increase the detection accuracy for distance 12.6 m and
15.6 m, which are poorly performed by method 1 and method 2.

Now with the use of the moving average background subtraction
method, the GasNet-2 architecture, we generate the curves of prob-
ability of correct assessment by method 3, which is shown in Fig. 8b. As
a comparison to Fig. 8a by method 1, method 3 moves up the curves
representing 12.6 m and 15.6 m by 3.8% and 6.1% respectively. From
Fig. 8b, binary detection accuracy is over 94% across all leak sizes at
close distances (∼5–10m). At farther distances (∼13–16m), leaks
larger than class 3 are detected with an accuracy over 95%.

From Fig. 8 and Table 4, we can see that method 3 produces the best
results. This may be because increasing the training data size and seeing
data with more variety in method 3 may help reduce model variance

Fig. 7. Model accuracy comparison after performing moving average background subtraction at the distance of 4.6 m (a) and 12.6m (b) for the 3 CNN architectures
and the baseline non-CNN architecture.

Table 4
Comparison of detection accuracy using three different model training ag-
gregation methods. All the results are computed by GasNet-2 architecture after
performing the moving average background subtraction method.

Distance (m) Method 1 Method 2 Method 3

4.6 98% 99% 98%
6.9 97% 99% 99%
9.8 89% 97% 96%
12.6 85% 91% 93%
15.6 85% 86% 91%

All distances 93% 94% 95%
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generalization error.
We find that the imaging distance is the most important parameter

affecting the effectiveness of automated OGI-based technology. This is
consistent with what Ravikumar et, al. found by simulations and ex-
periments in [27,28]. From our results, the curve representing the as-
sessment accuracy across 7 combinations of non-leak and leak shows
that generally the curve shifts lower as the imaging distance increases.
There are fewer plume pixels to use when the imaging distance is
greater. In particular, we can see a dramatic decrease in detection ac-
curacy at the smallest leak sizes and longest distances.

It is worth noting that the detection accuracy results are not com-
parable between the automated OGI-based detection technology pre-
sented in this study and OGI technology operated by people in prior
work [28]. We cannot draw a conclusion that the algorithm’s ability to
identify leaks is not as good as a human. The main reasons are: in [28]
operator used the high sensitivity mode of the IR camera, which is more
sensitive to even weak movement of small leaks compared to the
normal mode used in this study; and the presence of a leak in [28] was
determined by observing a leak video where we analyzed individual
frames in this study.

6. Concluding remarks

Our paper illustrates a novel application of deep learning and
computer vision that have a great potential in tackling the important
environmental problem of methane emissions and automating the leak
survey and detection with high accuracy.

Our machine vision algorithm, which is the first one in the field of
methane emission detection, is demonstrated to be successful using the
first methane leak video dataset, GasVid. Without collecting a back-
ground image, background subtraction method combined with CNN-
based GasNet algorithm is shown to be an appropriate approach for leak
detection, which eventually can be trained to handle complex and real-
world environments. CNN model performs better than the optical-flow
based change detection algorithm. GasNet with a moderate-complexity
variant generates the best results across distances. From the probability
curves, the detection accuracy can achieve as high as 99%. The overall
detection accuracy can be above 95% by using model training ag-
gregation method 3. For large leaks (∼710 g CH4/h) imaged closely
(∼5–7m), the detection accuracy can surpass 97%. At closer imaging
distances (∼5–10m), CNN-based models have greater than 94% ac-
curacy across all leak sizes. At farthest distances (∼13–16m), perfor-
mance degrades rapidly, but it can achieve above 95% accuracy de-
tecting large leaks (> 950 g CH4/h). The detection probability curve
offers unique values on how to use the automatic detection system to
realize greatest detection accuracy under various leak sizes and

distances.
Future work will be done to further develop the technology and

enlarge the GasVid dataset so that it can represent the diversity of leaks
that are observed in the real world and make the GasNet algorithm
more generalizable to real-world leaks. Currently, although the GasVid
dataset was collected from only one test environment, the algorithm is
expected to perform well in detecting real-world leaks, because the
background subtraction method allows the GasNet to focus on just the
leaks regardless of the leak location or background condition.

The accuracy of our algorithm will depend on the performance of
the camera affected by imaging distance, temperature contrast, and
movement of background, etc. We plan to examine these issues in fu-
ture studies.

Future work will also include exploration of different model archi-
tectures. For example, temporal information in the videos can also be
analyzed and used to detect methane leaks using sequence models in
order to capture plume motion. Given the number of environmental
parameters that affect plume dispersion, hybridization of machine
learning and physical models could lead to better automatic detection.
Such physical models may help the detection algorithm understand the
flow characteristics of the plumes, and could help quantify plume vo-
lume flux rate from imagery.

In the future, the automated OGI-based technology could be
equipped on the roof of maintenance vehicles or in a security camera
approach at perimeter of sites to achieve the so-called automatic vigi-
lance, saving the labor cost of manual IR detection and accelerating the
process of leak detection and repair.
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