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1

Abstract2

We present a tool for modeling the performance of methane leak detection and3

repair programs that can be used to evaluate the e�ectiveness of detection technolo-4

gies and proposed mitigation policies. The tool uses a two-state Markov model to5

simulate the evolution of methane leakage from an arti�cial natural gas �eld. Leaks6

are created stochastically, drawing from current understanding of the frequency and7

size distributions at production facilities. Various leak detection and repair programs8

can be simulated to determine the rate at which each would identify and repair leaks.9

Integrating the methane leakage over time enables a meaningful comparison between10

technologies, using both economic and environmental metrics. We simulate four ex-11

isting or proposed detection technologies: �ame ionization detection, manual infrared12

camera, automated infrared drone, and distributed detectors. Comparing these four13

technologies, we found that over 80% of simulated leakage could be mitigated with a14
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positive net present value, although maximum bene�t is realized by selectively target-15

ing larger leaks. Our results show that low-cost leak detection programs can rely on16

high cost technology, as long as it is applied in a way that allows for rapid detection17

of large leaks. Any strategy to reduce leakage should require a careful consideration of18

the di�erences between low-cost technologies and low-cost programs.19

Introduction20

Fugitive methane (CH4) emissions from the natural gas system are an important source21

of anthropogenic greenhouse (GHG) gases, 1 representing ≈25% of US CH4 emissions. In22

extreme cases, fugitive emissions could o�set the climate bene�ts of switching from other23

fossil fuels to natural gas. 2,3 Leak detection and repair (LDAR) programs aim to reduce24

fugitive CH4 emissions while providing additional revenue to natural gas producers from25

the sale of recovered gas. LDAR is an area of active research, and many proposed LDAR26

concepts rely heavily on new technologies, including constant monitoring of gas wells with27

high precision methane sensors, 4,5 automated surveys of natural gas �elds based on IR camera28

technology,6 or remote sensing of methane plumes using aircraft or satellites. 7,829

While many LDAR concepts and technologies have been studied in the literature, less30

work has been performed to rigorously compare di�erent proposed LDAR programs regard-31

ing their e�ectiveness. For example, which LDAR technology has the most potential to32

reduce the cost of CH4 mitigation? Or, how important is labor minimization in driving cost33

reductions from a new LDAR concept? Rigorously comparing proposed LDAR programs34

requires a model of leakage from a gas facility, as well as a model of how an LDAR program35

would detect any given leak. Such a model must be able to accurately simulate the evolution36

of leakage through time under various proposed and implemented LDAR programs. This37

model must also include all major costs of LDAR programs, such as labor and technology38

costs. Because no such model currently exists, we developed the Fugitive Emissions Abate-39

ment Simulation Toolkit (FEAST) model to explore the e�ect of various LDAR programs40
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on long-term leakage rates.41

In FEAST, CH4 leaks in a computer-simulated gas �eld are generated dynamically as42

the simulation proceeds. Depending on the LDAR program under study, the repair rate is43

calculated using a physics-based model: the concentration of methane downwind of every44

leak is simulated using a Gaussian plume model, and the speci�cations of a particular LDAR45

program are applied to the simulated plume to determine whether or not it is detected.46

LDAR programs in FEAST are represented by a combination of technology parameters47

(e.g., survey sensitivity) and implementation parameters (e.g., survey frequency). Given an48

LDAR program, FEAST �nds and �xes leaks appropriately. Integrating the leakage rate49

through time yields the total amount of lost gas under a particular LDAR program. By50

assigning a value to the lost gas and estimating the cost of maintaining the LDAR program,51

FEAST estimates the economic value of the LDAR program in net present value (NPV)52

terms and LDAR program environmental bene�ts.53

In this paper, FEAST is applied to four conceptual LDAR programs. We �rst describe the54

FEAST methodology and LDAR program representations. We then compare our simpli�ed55

LDAR programs to illustrate their strengths, weaknesses, potential for improvement and56

relative value. We conclude with a description of future directions for research.57

Methodology58

FEAST is an open-source model programmed in the MATLAB computing environment. 959

FEAST model code and documentation are made open source as supporting information60

(SI), and so can be downloaded and used as desired by the reader.61

Markov model62

FEAST simulates leakage from a natural gas �eld by modeling every potential leaking com-63

ponent in the �eld using a two-state Markov process: a component may either be in the64
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�leaking� state or in the �robust� state. The simulation time period is broken into discrete65

time steps, and every component, whether leaking or not, is given a probability of changing66

state in a given time step. This probability depends on the LDAR program being simulated67

and the behavior of the natural gas infrastructure. Note that Markov processes (by de�-68

nition) do not depend on behavior history, while in reality there is some evidence that the69

probability of leakage from a component depends on its type and age. 10�13 This is consid-70

ered further in the discussion section. With more experimental and statistical data, future71

versions of FEAST could be implemented using higher-order Markov chains.72

The FEAST Markov model is implemented in three basic steps: gas �eld initialization,73

dynamic simulation, and results storage (see Figure 1).74

Gas �eld initialization75

The initial condition is de�ned by the number and size of leaks distributed throughout the76

natural gas �eld, as well as physical characteristics of the gas �eld that a�ect the performance77

of LDAR programs. Physical characteristics include: distance between wells, number of78

potentially leaking components per well, and area at each wellsite that must be searched for79

leaks.80

Several publicly-available datasets exist that characterize the leakage from existing gas81

�elds (Table 1). As shown in Table 1, the Fort Worth air quality study 14 (henceforth82

FWAQS) o�ers the largest sample of leaks that is publicly available. We calculate the av-83

erage number of leaks per well found in the FWAQS (≈ 2) and apply a truncated normal84

distribution about this average, approximated to the nearest integer, to initialize leaks in85

FEAST. FEAST then randomly draws the size of each leak from the leaks found in the86

FWAQS, which have a heavy-tailed size distribution (i.e., lognormal like: large leaks are87

proportionally more impactful than would be expected in a simple Gaussian size distribu-88

tion). The result is a randomly generated set of leaks that is statistically similar to the89

empirical FWAQS data. FEAST can also use other leak size distributions provided informa-90
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Figure 1: Flowchart of FEAST model structure
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tion from a user. It should be emphasized here that there is growing evidence 15,16 of highly91

skewed leak size distribution in the natural gas infrastructure. The leak sizes used in this92

model, derived from the FWAQS, represents one such heavy-tailed distribution.93

The distance between wells, number of components per well and other physical features94

were chosen to be within the range of values found for US natural gas �elds (see SI Section95

S3.2.2, SI Table S3.1).96

Table 1: Summary of results from leakage studies of natural gas production facilities

Name Year Detection Number Number Leaks
method of wells of leaks per well

aCarbon Limits17 2014 bIR camera ≈ 5300 NR NR
cFort Worth14 2011 dFID/IR camera 1138 2126e ≈ 2
Allen18 et al. 2013 IR camera 292 769 ≈ 2.6
Kuo19 2012 Spectroscopy 172 59 ≈ 0.3
API 458920 1993 FID 82 1513 ≈ 18
Fernandez11 2006 Bubble test 12 132 11

a - Carbon Limits reported the number of well sites and well batteries surveyed. We estimate the
number of wells by assuming an average of 3 wells per survey in the well sites and well batteries
category. There were 39505 leaks recorded in all facilities.
b - Infrared
c - All components were surveyed with an IR camera. 10% were also surveyed with a FID.
d - Flame Ionization Detector
e - Data on the number of wells and leaks can be found in the Government of FortWorth, TX
website: http://fortworthtexas.gov/gaswells/air-quality-study/�nal. Site-speci�c data can be found
in Appendix 3-B: Emissions calculations workbook of the FortWorth, TX Air Quality Study14

Atmospheric conditions97

The performance of LDAR programs depends on the environmental conditions surrounding98

the gas �eld, such as the wind speed and atmospheric stability. The wind speed is chosen99

from an empirical distribution suggested by ARPA-E in the recent MONITOR challenge. 4100

For each time step, one wind speed is selected from this dataset at random. The wind101

direction is chosen from a second empirical wind dataset collected at Fort Worth. 21 Once the102

wind speed has been selected, the stability class is chosen at random with equal probability103

from the realistic classes associated with that wind speed. 22 See SI Section S3.3 for more104
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details. In the absence of site-speci�c information, the ARPA-E wind speed distribution105

can be used as a template wind pro�le near production facilities. Users of this model can106

input appropriate data sets speci�c to the infrastructure being studied. It should be noted107

that meteorological conditions like atmospheric conditions, time of day, etc. can play a108

signi�cant role in detection capability for di�erent technologies. While these can be included109

in the technology modeling, the results presented in this paper assume daytime operation110

for all technologies.111

Dynamic simulation112

At each time step, a small fraction of components in the robust state are changed to the113

leaking state to emulate a nonzero leak production rate. No published studies were found114

that directly estimate the leak production rate; however it is possible to use two existing115

studies to estimate the rate of leak generation.116

First, the Carbon Limits dataset 17 (henceforth CL) provides one means for estimating117

the leak production rate. CL reports data from 1000s of wells, suggesting that within the118

�rst year after a leak survey is completed the average natural gas well battery emits 1.8119

tons of volatile organic compounds (tVOC). The associated methane leak creation rate is120

calculated based on the following four assumptions:121

• Leakage that persists after the LDAR survey is negligible (i.e., leaks that are found in122

an LDAR survey are �xed);123

• The rate of leakage increases linearly throughout the year;124

• CH4 and VOC mole fractions are consistent with the average values reported by tech-125

nical documents; 20126

• The number of leaks repaired between LDAR surveys is negligible.127

Using these assumptions, we derive Equation 1 for the leak creation rate, where EV OC is the128

estimated total VOC emissions between surveys, ∆t is the length of time between surveys129
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(one year, in this case) and mCH4/mV OC is the mass ratio of CH4 emissions to VOC emissions130

(see SI section SA.2 for the method used to estimate mCH4/mV OC). According to Equation131

1, the CL data suggest a leak creation rate of 3.8× 10−4 g CH4/s per well per day.132

Rl =
2EV OC

∆t2
mCH4

mV OC

(1)

Alternatively, FWAQS data 14 can be used to estimate the leak production rate. Based133

on the assumption that the rate of leakage increased linearly from zero when the facility was134

�rst built, the leak creation rate in the Barnett shale region can be estimated by dividing135

the total leakage rate in the FWAQS study by the average age of gas wells. This gives a136

leak production rate of 1.8 × 10−4 g/s per well per day, or ≈50% of the CL value. FEAST137

defaults to the average value of 2.6 × 10−4 g/s per well per day. There are many possible138

explanations for the discrepancy between the two results reported above, including di�erent139

types of infrastructure, di�erent facility age, di�erent regulations, or di�erent management140

practices in the two regions studied. As noted below, more work is needed to generate better141

estimates of the leak detection rate. In order to compensate for the lack of reliable data on142

leak production rates across the US infrastructure, we have used a range from 1.8× 10−4 to143

3.8 × 10−4 g/s per well per day in the sensitivity analysis. Since the model is open source,144

these values could be replaced with a more representative generation rate for a particular145

set of gas wells.146

The probability of a component switching from the robust to the leaking state during a147

time step of duration δt is given by Equation 2. Rl is the leakage creation rate [g/s per well148

per day], Nc/w is the number of components per well, and µl is the average leak size [g/s].149

PR,L =
Rl

Nc/wµl
δt. (2)

At each time step every robust component is given the probability PR,L to begin leaking.150

Components that begin leaking have leakage rates drawn from FWAQS empirical data, as151

8

Page 8 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



during initialization.152

Choosing a PL,R that is constant through time implies that the quality of gas infrastruc-153

ture and maintenance does not change during the simulation. It does not imply that the154

leakage increases linearly through time. On the contrary, the stochastic nature of FEAST155

allows for a di�erent number of leaks to be introduced at every time step and the size of each156

created leak is chosen randomly, independent of PL,R. Super emitters are extremely large but157

rare leaks in the FWAQS, and their frequency in FEAST follows the FWAQS distribution.158

When FEAST happens to generate a super emitter, a signi�cant discontinuity occurs in the159

total �eld leakage, just as the total leakage from a real gas �eld suddenly increases if a tank160

hatch cover is accidentally left open. Over su�ciently long time scales, these discontinuities161

can be averaged out and the total leakage will increase approximately linearly if PL,R is162

constant (and repairs are neglected). A small modi�cation to the Markov model can allow163

for a variable PL,R if a change in the leak production rate is expected. We explore one such164

scenario in the discussion section.165

LDAR programs166

An LDAR program in FEAST includes the combination of an applied LDAR technology and167

an LDAR implementation. Technology parameters include factors such as detector costs and168

sensitivities, while implementation parameters include factors such as frequency of surveys169

or repair practices. The probability that a leaking component switches to the robust state170

(PL,R) in a given time step requires a model of the LDAR program being evaluated. By171

de�nition,172

PL,R = PNull
L,R + PLDAR

L,R (3)

By default, all LDAR simulations include a �Null LDAR program� which contributes PNull
L,R173

to the probability of detecting a leak. In the scenarios below, PNull
L,R N i

L = PR,LN
i
R, where N

i
L174

and N i
R are the initial number of leaking and robust components, respectively. That is, the175
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background rate of leak creation multiplied by the number of robust components equals the176

rate of leak detection multiplied by the number of leaking components without LDAR, and177

therefore the number of leaks is in steady state over long-time Markov simulation. Adding an178

LDAR program on top of the Null program increases the value of PL,R by adding additional179

probability of �nding and �xing leaks PLDAR
L,R , such that a new, lower steady state leakage rate180

is reached. Changing the settings of the Null program allows the user to explore scenarios181

in which the background prevalence of leaks increases as the facility ages (i.e., PNull
L,R N i

L <182

PR,LN
i
R).183

Four simpli�ed example LDAR programs are simulated here. These LDAR programs184

include:185

• Flame Ionization Detector (FID) - Manual application of a �ame ionization detector186

technology, after which components with a local CH4 concentration above a threshold187

are replaced. The FID technology is the �default� �rst pass detection technology used188

in many historical studies.189

• Distributed Detector (DD) - Methane detectors are placed at intervals along the dom-190

inant downwind direction characteristic of the location and alert repair crews when191

local concentrations at a detector exceed a threshold detection limit. After leaks are192

detected, repairs are performed at a set repair interval.193

• Manual Infrared (MIR) - A manual infrared imaging method, wherein an operator uses194

an IR camera to visualize methane plumes and tags components to be �xed. A manual195

IR technique is another very commonly applied LDAR method.196

• Automated Infrared (AIR) - An automated infrared technique where an infrared-197

equipped aircraft �ies over natural gas sites and detects leaks from their infrared198

signature. After leaks are detected, images of each leak are sent to repair crews to199

facilitate repair.200
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The most important parameters for each LDAR program are given in Table 2. See SI201

Table S3.5 through Table S3.8 for full details of LDAR parameters and default settings for202

each LDAR program.203

In the FID survey method, all leaks are found and repaired at each time step when a204

survey occurs. Therefore, PLDAR
L,R = 0 at all time steps, except at the time step of a survey205

when PLDAR
L,R = 1. Such a detection certainty is justi�ed because the underlying dataset used206

in FEAST was obtained using a FID-based leak detection program.207

FEAST uses a Gaussian plume model to compute PLDAR
L,R for the DD, MIR, and AIR208

programs. Such a model accounts for the buoyancy of emitted gas and re�ection of the209

plume o� the ground. The e�ect of an atmospheric inversion is not considered since we210

are interested in the behavior of plumes within a few tens of meters of the ground. The211

concentration Φ [g/m3] downwind of the plume is given by,212

Φ =
Q

2πuσy(x)σz(x)
exp

(
(y − y0)2

2σ2
y(x)

)[
exp

(
(z − zM(x))2

2σ2
z(x)

)
+ exp

(
(z + zM(x))2

2σ2
z(x)

)]
(4)

where x, y and z are the coordinates at which the concentration is to be calculated [m]:213

x is measured downwind of the leak, z is the vertical displacement from the ground, y0 is214

the position of the leak source in the y direction, Q is the leak �ux [g/s] and u is the wind215

speed [m/s]. σy and σz are the standard deviation of the plume concentration [m], extracted216

using linear interpolation to published curves 22�24 based on the atmospheric stability class.217

Finally, zM is the vertical position of the middle of the plume as a function of x. zM accounts218

for the plume buoyancy and follows the methodology suggested by Beychok (see SI Section219

S2.3).25220

The DD, MIR and AIR programs use the Gaussian plume model in di�erent ways. For221

the DD detector, the concentration of methane at the location of the plume is compared to222

a prede�ned detection threshold. If the concentration is greater than the threshold, the leak223

is detected. The probability that the concentration exceeds the detection threshold depends224

11

Page 11 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



Table 2: Notable parameter settings in the base case and extreme sensitivity cases. See SI
for complete list of Markov model and LDAR program speci�cations.

Symbol Name Units Base Case High Savings Low Savings

Markov Model

Rl Leak production rate g/s-well-day 2.6× 10−4 5.2× 10−4 1.3× 10−4

- Leak size data source - FWAQS 14 Allen18 -
Cg Gas price $/mcf 5 8 3
RRD Real discount rate % per y 8 5 10
A Aging factor - 1 2 -
FID

CCap Total capital $ 35000 20000 50000
λ Lifetime years 10 5 20
RS Survey speed components/hour 150 300 75
TSI Survey interval days 100 50 200
TSU Setup time hours 0.5 - -

DD

Cdetector Cost per detector $ 500 200 1000
Ns/W detectors per well - 4 2 8
TLI Repair interval days 50 25 100
Tsetup Setup time hours 0.5 - -
Φmin Min. concentration g/m3 10−2 10−3 10−1

MIR

CCap Capital cost $ 120000 60000 240000
λ Lifetime years 10 5 20
RS Survey speed components/hour 500 1000 250
Γmin Min. conc. path. m-g/m3 0.4 0.2 2
FPD,min Min. fraction of pixels % 10 5 20

above Γmin for detection
TSI Survey interval days 100 50 200
TSU Setup time hours 0.5 - -

AIR

Ccap Total capital cost $ 193000 100000 300000
FPD,min Min. fraction of pixels % 10 5 20

above Γmin for detection
Γmin Min. conc. path. m-g/m3 0.4 0.2 2
TSI Survey interval d 14 7 28
vS Survey speed m/s 5 10 2.5
Zcam Camera height m 20 10 40
λ Lifetime y 3 5 1.5
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on the size of the leak, the location of the leak relative to the detector, and atmospheric225

conditions. The location of the leaks are chosen randomly within a pad area de�nition.226

Various placement patterns of DD sensors are explored in prior work. 26227

The detection threshold for the IR camera methods requires that a minimum fraction of228

the camera pixels be above a minimum concentration pathlength. 27 The signal in each pixel229

is estimated by numerically integrating the concentration calculated by the Gaussian plume230

model along the path imaged by each pixel according to Equation 5, where α is an implied231

constant in the detection criteria and Λ is the path imaged by a pixel.232

Signal = α

∫
Λ

Φ(x(s), y(s), z(s))ds (5)

A simulation of this concentration-pathlength, as seen by an IR camera 30 m to the side233

of the leak source, for two di�erent leak rates, using the Gaussian plume model is shown in234

Figure 2.235

Angle from Camera (degrees)

A
ng

le
 fr

om
 C

am
er

a 
(d

eg
re

es
)

 

 

−2 −1 0 1 2

2

1

0

−1

−2

Angle from Camera (degrees)

A
ng

le
 fr

om
 C

am
er

a 
(d

eg
re

es
)

 

 

−2 −1 0 1 2

2

1

0

−1

−2
0

0.5

1

1.5

2

Figure 2: Simulated concentration-pathlength pro�le of natural gas leaks of 1.5 g/s (left)
and 0.15 g/s (right), at a wind speed of 2 m/s and stability class C. Leaks are imaged by a
camera 30 meters to the side of the leak source. The color bar indicates the signal to noise
ratio as imaged by the IR camera.
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Economic analysis236

The Markov model generates a time series of leakage associated with each simulated LDAR237

technology. Assigning a value to the gas saved by an LDAR program in comparison to a238

status quo simulation (in this case the Null LDAR program) enables an NPV analysis of239

each modeled LDAR program and an estimate of the CH4 emitted.240

We use a standard NPV analysis to compare the economic value of various LDAR pro-241

grams. The NPV is calculated according to Equation 6, where Zt is the set of all time steps,242

VL(ti) is the value of the leakage lost during the ith time step, and C is the cost of running243

the LDAR program in the ith time step. RRD is the real discount rate (8%).244

NPV =
∑
i∈Zt

(VL(ti)− C(ti))

(
1

1 +RRD

)ti
(6)

The price of natural-gas for base-case analysis is �xed at $5/mcf over the entire simulation245

period, while a range from $3/mcf to $8/mcf is used for sensitivity analysis. The cost246

of �xing leaks is drawn at random from a comprehensive list of over 1600 leaks from a247

2006 EPA study, 11 with costs adjusted for in�ation. There was no correlation between the248

measured leak magnitudes in that study and the estimated costs to �x each leak (see SI249

Fig. S3.14) thereby justifying randomly selecting costs. It should be noted that the NPV250

analysis performed here is only representative, and is best used as a tool to compare various251

LDAR technologies in terms of its cost-e�ectiveness instead of absolute dollar terms. Further252

re�nement of this model would need to incorporate enterprise-level information regarding253

captial structures and speci�c characteristics of the business model in use.254

Results and discussion255

A FEAST scenario is de�ned by the user de�ned settings, inputs and the underlying dataset256

provided to FEAST. We refer to the results generated by running FEAST once as one257
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realization of a particular scenario. Because FEAST is stochastic, results will change each258

time FEAST runs a particular scenario. Numerous realizations must be analyzed in order259

to understand the the implications of a particular scenario.260

Figure 3 shows the leakage time series of a single realization of the default scenario in261

FEAST for di�erent LDAR programs, including the Null program and a No-Repair program.262

While the time-series change in total leakage will be di�erent for each realization because of263

the stochastic nature of the model, the general trends in Figure 3 are characteristic of the264

LDAR programs. This simulation covers a 10-year time period, so the number of evaluation265

periods is large and steady-state behavior is always reached. The gas saved over the duration266

of the simulation by a particular LDAR program is the area between the Null program time267

series and the LDAR program time series.268

The Null LDAR program is intended to emulate repairs that occur in the �eld without269

any explicit LDAR program, and is set in this scenario as noted above (PL,RN
i
L = PR,LN

i
R).270

These Null program repairs may occur during routine maintenance or upgrades to equipment.271

We suggest that the Null program be used to represent the status quo, although users can272

choose their own baseline. The No-Repair program never removes any leaks from the gas273

�eld, and the leakage increases inde�nitely (PL,R = 0). Because the Null scenario repairs the274

majority of the leaks compared to a No-Repair scenario, it is only instructive to compare275

any marginal-advantages of an LDAR program to the Null scenario (i.e., No-Repair results276

are not used to calculate LDAR bene�ts below).277

There are two types of variability in FEAST: the variability in the mean behavior between278

di�erent scenarios and the stochastic variability between realizations. Figure 4 illustrates279

both of these types of variability. The left �gure shows the di�erence in the mean behavior280

of the LDAR programs, broken down into cost and bene�t components. We can see that281

the labor cost (a major component of �Finding Cost�) dominates in some technologies (e.g.,282

FID), while the capital cost dominates in others (e.g., DD). The error bars represent the283

standard error in the estimate of the mean due to the limited sample size employed here.284

15

Page 15 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Time (days)

T
ot

al
 L

ea
ka

ge
 [g

/s
−

w
el

l]

 

 

AIR
DD
MIR
FID
Null
No repair

Figure 3: Time series of a single realization of the default scenario in FEAST for the four
di�erent LDAR programs, including the null and no-repair program. In the no-repair case,
the total leakage doubles within a few years, while it reaches a steady state in every other
case. The null repair scenarios �xes the majority of the leaks compared to the no-repair
scenario, and therefore any marginal-advantage of the LDAR programs are calculated when
compared to the null scenario.
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The standard error was computed as:285

σµ =
σs√
N

(7)

where σµ is the population mean, σs is the sample mean, and N is the number of samples286

(realizations). In this work, N = 100 for each scenario. The variation between stochastic287

realizations is shown in the right side of Figure 4. We see that while the variation between288

realizations is large, the technologies are di�erent enough that clear trends can be discerned.289

Considering the median NPV for all realizations, the AIR, DD and MIR LDAR programs290

have a positive NPV across the range of inter-realization variability. Compared with these291

technologies, the intensive labor costs for an FID-based LDAR program results in a negative292

median NPV.293
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Figure 4: (left) Variability in the mean behavior between di�erent scenarios of the various
LDAR programs shown as a cost vs bene�t diagram. Note that the distribution of costs
between capital, labor, repairs and maintenance are dependent on the technology and the
methodology adopted in the LDAR program. For example, while the cost of implementing a
DD program is dominated by the cost of the detectors, the FID program e�ectively depends
only on labor costs. (right) Stochastic variability between di�erent realizations of a scenario
for di�erent LDAR programs. While the variation exceeds 50% of mean in some cases, clear
trends can be observed: the FID program, highly dependent on labor cost, has a signi�cantly
lower NPV compared to other LDAR programs.

Perhaps the most instructive results from FEAST are illustrated by varying scenario294

settings, as shown in a tornado diagram in Figure 5. The settings used to generate these295

sensitivity cases are given in Table 2. They were chosen to represent the realistic range of296

values for each parameter. Note that simulating �elds within the realistic range of leak pro-297

duction rates given available data results in enormous variability between scenarios. Clearly,298

improved data to quantify the leak production rate of gas �elds would mitigate the primary299
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driver of uncertainty in FEAST.300

One of the base case assumptions in FEAST is a constant leak production rate. Some301

evidence suggests that gas infrastructure is likely to produce leaks at a greater rate as it302

ages, although little data exist to quantify this e�ect in natural gas wells. 10�13 We allow for303

a variable leak production rate in one sensitivity case: the leak production rate increase304

linearly from 2.6 × 10−5 g/s per well per day to twice its value over the 10 year simulation305

period. It can be clearly seen from Figure 5 that any additional increase in the baseline leak306

creation rate only increases the value of the LDAR programs.307
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Figure 5: Sensitivity of the NPV of the four simulated LDAR programs to various parameters
of the natural gas �eld, detection technology and survey procedures. It should be noted
that extrinsic factors like the leak production rate and gas price play an out-sized role in
determining the NPV of various LDAR programs. In the case of FID, which has signi�cantly
lower NPV than other LDAR programs, we see that reducing the intervals of leak detection
will result in a greater cost reduction compared to the reduction in gas savings.

Each LDAR program has unique characteristics that can be adjusted in FEAST to explore308

their e�ects. The FID program can be greatly improved by reducing the time required to309

complete surveys and decreasing the frequency of surveys from the default case. This is310
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because the baseline FID cost is dominated by the labor cost of this slow technology. This311

result is intuitive because the FID program has no trouble �nding leaks and labor is the312

primary cost of the FID program; reducing the frequency of surveys reduces labor costs313

more than it decreases gas savings.314

In either IR camera program, improving the sensitivity of each camera pixel to methane315

increases the value of the LDAR programs. However, the results are less sensitive to the316

number of pixels that must be above the detection limit. Only the MIR program is sensitive317

to the survey time and survey interval of the program, while the value of the AIR program is318

largely independent of these factors. In fact, the AIR program is only sensitive to properties319

that a�ect the number and size of leaks that it detects. This is because the amortized320

operating costs of the AIR program are very small in comparison to the amount of gas that321

it detects, due to the fact that the automated airborne system can visit a large number of322

wells per unit time. Reducing the amount of gas detected by 20% has a greater e�ect on the323

cash �ow of the AIR program than doubling its operating expenses.324

The DD program shares many traits with the AIR program: it bene�ts from changes that325

increase the number of leaks detected and is insensitive to the survey interval and survey time326

required to pinpoint the location of leaks. However, the distributed detector program is the327

only program simulated that is signi�cantly sensitive to the capital cost of the equipment.328

A distributed detector program requires detectors to be placed at every well, while a single329

piece of survey equipment for an FID, MIR or AIR program can service hundreds or even330

thousands of gas wells, depending on the survey frequency and time for each survey. Low331

sensitivity methane detectors can have extremely low capital costs on the order of $1, but332

detectors with ppb scale sensitivity can cost $10, 000 to $100, 000. In the base case, we333

simulated an intermediate detector with a cost of $500 and a sensitivity of 15 ppm.334

Notwithstanding the sources of variability in results outlined above, the absolute values335

computed with FEAST are encouraging. We found that the MIR, AIR, and DD programs336

are likely to have positive NPVs. Under most scenarios we considered, the AIR program has337
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the greatest NPV, ranging up to $15, 000 per well over a ten year period in the best case338

sensitivity scenario (see Figure 5).339

The most speculative of these scenarios is perhaps the AIR program. Some AIR assump-340

tions may ultimately prove unrealistic. However, the basic characteristics of the program341

that make it cost e�ective are instructive: it allows for high speed servicing of wells and only342

identi�es relatively large leaks. Sacri�cing some sensitivity for speed allows the majority of343

leakage to be found (when using realistic heavy-tailed leak size distributions) while greatly344

reducing operating costs and reducing the cost of �xing small leaks with small gas savings.345

With these factors included, the capital cost of a drone and high performance IR camera346

system (estimated at $193k for the purposes of this example) proved to be largely immate-347

rial to the project NPV. This clearly shows that there is a signi�cant divergence between348

low-cost LDAR technologies (�cheap detectors�) and low-cost LDAR programs (�cheap de-349

tection�). Low-cost LDAR programs can in fact rely on highly sophisticated and high cost350

technology, as long as this technology is applied in a way that allows for rapid scanning and351

robust detection of large leaks. The end-member of such a technology spectrum would be a352

high-resolution satellite-based system, which would have very high capital costs, but could353

in principle detect leaks across a wide swath of the Earth's surface each day.354

One of the big challenges in the methane leakage problem is its magnitude - the vast355

variety in the infrastructure and skewed leak size distribution makes direct measurements356

and subsequent extrapolation costly (i.e. large sample sizes are needed). Considering the357

costs associated with implementing leak detection programs, it becomes vitally important to358

develop tools to help businesses develop cost e�ective strategies. FEAST is general enough359

to allow businesses and others to tailor the model to speci�c sites/conditions as they see �t.360

The results presented here should not be taken as de�nitive but more as an example of the361

various possibilities available to users362

We emphasize that the economic analysis of various LDAR programs presented here is363

only indicative of general trends, and should not be interpreted as a de�nitive analysis of364
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the cost-bene�ts ratio for a given technology. Also, FEAST NPV calculations are operator-365

centric: they take into account the additional revenue from the sale of recovered gas in its366

cost-bene�t analysis, but neglect other important e�ects such as the social cost of carbon, a367

future carbon tax or carbon trading market, health bene�ts associated with the reduction of368

Volatile Organic Compounds (VOCs) and the avoided costs of climate change adaptation.369

In proposing new regulations to reduce methane emissions from the US oil and natural370

gas industry by 40 to 45% from 2012 levels in 2025, the Environmental Protection Agency371

(EPA) has estimated net climate bene�ts alone at $120 million to $150 million.28 Adding372

bene�ts accrued from reductions in health e�ects related to �ne particle pollution, ozone, air-373

toxics, and improvements in visibility would only incentivize support for a strong methane374

mitigation policy, resulting in a much higher social NPV for various LDAR programs.375

Supporting Information Available376

Simulation code in MATLAB along with supporting technical documentation and user-guide377

This material is available free of charge via the Internet at http://pubs.acs.org/.378
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